QCD Fits of Hadronic Final State Observables: From HERA to LHC

Tancredi.Carli@cern.ch

Joel Ekstrand

- Aim of the Project
- Recap: "fast NLO"
- 3/2-jet ratio: exploring sensitivity to strong coupling

Aim of the Project

Learn how to run NLO codes and study sensitivity of basic SM processes at LHC to parton densities and strong coupling

Set-up grid for coefficient functions using NLO programs \rightarrow can be easily shared See what combination gives best sensitivity to constraint

PDF & strong coupling && luminosity

investigate theoretical uncertainties

(clever choice of observables Et, eta, asymmetries, ratios etc.)

investigate experiment uncertainties (detector calibration/alignment etc.)

Perturbative Cross-section Formula and "fast NLO " Technique

,,fast NLO" turns convolution in product: $\sigma \approx \sum_{i,n} \alpha_s^2(\mu_r^2) \quad f_{i/p}(\xi_i) \int_0^1 d\xi \, c_{i,n}(x_{BJ} / \xi) \, E_i(\xi)$ with $f_{i/p} = \sum_i f_{i/p}(\xi_i) \, E^{(i)}(\xi)$ Perturbatively calculable coefficients For incl. DIS: analytically known For jets: need computation via NLO MC program: - defined via jet algorithm - within detector acceptance

calculation takes typically 1 day of CPU time

 \rightarrow can not be included in global PDf-fit

E can be: Triangles, delta-function, Polynoms or

This example works in x-space Can also be done in N-space, via Mellin-Moments (very elegant!)

3/2 Jet Ratio at TEVATRON

Idea:

$$\frac{d\sigma_{3-jet}}{d\sigma_{2-jet}} = \frac{\alpha_s^3 \int \dots dx_1 dx_2}{\alpha_s^2 \int \dots dx_1 dx_2} = \alpha$$

PDF uncertainty cancel PDF ~ scale uncertain.

- Residual uncertainty: 5-10%
- -Data not so well described
 - low E_T ?
 - scale choice ?
 - had corr ?

- multiple interactions ? ...will be investigated In the next future (in collab. with SHERPA group)

3/2 Jet Ratio at LHC

Lack of statistics ! Computing time for these plots few days ...needs one long run with "fast NLO" and then full determination of uncertainties is easy

Looks promising: Scale uncertaint. ~5-10% Pdf uncertaint ~10-20%

Conclusion and Prospects

- Far behind original working plan (I work 99.9% on calibration strategies for ATLAS)
- Learned how to run NLOJET++, Z. Nagy promised help on remaining questions
- 3/2-jet ratio seems to be promising for measuring the strong coupling at LHC and TEVATRON, since uncertainties cancel
 - (measure x for several fix Et to get ,,running")
- This could be the observable "fixing" the strong coupling in in a global fit to LHC data
- Next steps: work on the set-up of "fast NLO" grid
 - to determine full uncertainties with good accuracy
 - to provide it to global "fitters" like Mandy
- More people are interested and welcome to cover all processes (may needs a working environment to come to full steam ?)