Un-integrated PDFs, Scales and Uncertainties

H. Jung, DESY

- Image: k_t effects is our picture correct ?
 DGLAP vrs CCFM
- u-PDFs: uncertainties
 Scales, cutoffs etc further uncertainties
- conclusion

LO **NLO** $O(\alpha_s^2)$ $O(\alpha_s^3)$ p_{t}^{2}, M^{2} 88 \checkmark is Q^2 , or p_t^2 or M^2 the relevant scale in **DGLAP**? what is the meaning ?

scale gives maximum k_t

- If Q^2 , or p_t^2 or M^2 the relevant scale in DGLAP ?
- what is the meaning ?
- scale gives maximum k_t
- \checkmark what matters for x-section is: $< k_t >$
- special cases rightarrow sensitive to k_t^{max}

- If Q^2 , or p_t^2 or M^2 the relevant scale in DGLAP ?
- what is the meaning ?
- \checkmark scale gives maximum k_t
- \checkmark what matters for x-section is: $< k_t >$
- special cases rightarrow sensitive to k_t^{max}

k_t 's similar for HERA and LHC !!!!

- Is Q^2 , or p_t^2 or M^2 the relevant scale in DGLAP ?
- what is the meaning ?
- scale gives maximum k_t
- what matters for x-section is: < k_t >
- special cases $rac{rac}{rac}$ sensitive to k_t^{max}

 k_t 's similar for HERA and LHC !!!! dependence on x, M^2 and scheme (DGLAP/BFKL/CCFM)???

1

0

M=10 GeV

. 10⁻⁶ 10⁻⁵

M=50 GeV

M=10 GeV

 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

0

-1

-2

10 ⁻⁶

DGLAP has similar $\langle k_t \rangle$'s for different x and M^2 !!!! • importance of starting distribution ... saturation at low scales BUT CCFM/BFKL (small x): increasing $\langle k_t \rangle$ for decreasing x

1

х

1

X

 10^{-4} 10^{-3} 10^{-2} 10^{-1}

 $< k_t >$ effects: DGLAP vrs CCFM

H. Jung, Un-integrated PDFs ... , HERA-LHC WS, WG1+WG2, CERN, 12. Oct 2004 - p.4

uPDFs: uncertainties in gluon distribution

uncertainties in uPDF

effect of starting distributions in x and k_t effect of scale variations, renormalization - factorization scales treatment of cut-offs: soft region saturation effects (see talk by K. Kutak)

choice of evolution scheme (CCFM, BFKL, etc) Ordering

Splitting functions: treatment of DGLAP part (non-sing. terms) Splitting functions: quarks (problem of double counting) kinematic/consistency constraints

benchmarks for uPDFs

describe at least inclusive x-section: $F_2(x, Q^2)$ and $F_2^c(x, Q^2)$ apply to hadronic final state calculation: forward jets at HERA and/or *b*-production at Tevatron ?

uPDFs: uncertainties in gluon distribution

uncertainties in uPDF

effect of starting distributions in x and k_t effect of scale variations, renormalization - factorization scales treatment of cut-offs: soft region saturation effects (see talk by K. Kutak)

choice of evolution scheme (CCFM, BFKL, etc) not covered here Ordering Splitting functions: treatment of DGLAP part (non-sing. terms) Splitting functions: quarks (problem of double counting) kinematic/consistency constraints

benchmarks for uPDFs

describe at least inclusive x-section: $F_2(x, Q^2)$ and $F_2^c(x, Q^2)$ apply to hadronic final state calculation: forward jets at HERA and/or *b*-production at Tevatron ? New fits to $F_2(x,Q^2)$

With $\sigma = \int dk_t^2 dx_g \mathcal{A}(x_g, k_t^2, \bar{q}) \sigma(\gamma^* g^* \to q\bar{q})$ fit $F_2(x, Q^2)$

available data:

H1 NPB 470 (1996) 3., EPJ 21 (2001) 331. ZEUS ZPC 72 (1996) 399., EPJ 21 (2001) 443.

- fit $Q^2 > 4.5 \text{ GeV}^2$, x < 0.005
- starting scale & cut-off for resolvable branching $Q_0 = 1.3 \text{ GeV}$
- **9** quark masses: $m_q = 0.250 \text{ GeV}$, $m_c = 1.5 \text{ GeV}$
- initial gluon $x\mathcal{A}_0(x,k_{t0}^2)$
- investigate:
 - \bullet small k_t region during evolution
 - change of renormalization scale
 - change of factorization scale: from $q\bar{q}$ pair to q or \bar{q}

uPDF obtained from fit to F_2

Choice of starting scales and cutoffs

Choice of starting scales and cutoffs

 $\bar{q} = 4 \text{ GeV}$

use F₂ data from H1 & ZEUS
fit Q₀ and normalization

to investigate scale dep: • change renorm scale $0.25p_t^2 < \mu_r < 4p_t^2$ since no NLO for k_t -fact. perform new fits to F_2 set A+ (set B+) • $4p_t^2$

Choice of starting scales and cutoffs

 $\bar{q} = 4 \text{ GeV}$

use F₂ data from H1 & ZEUS
fit Q₀ and normalization

to investigate scale dep: • change renorm scale $0.25p_t^2 < \mu_r < 4p_t^2$ since no NLO for k_t -fact. perform new fits to F_2 set A- (set B-) • $0.25p_t^2$

Choice of Factorization Scale \bar{q}

Choice of Factorization Scale \bar{q}

Choice of Factorization Scale \bar{q}

Uncertainties in x-section predictions

- Tools available for error estimates of xsect prediction apply similar procedure as in collinear fact. approach
- variation of scales renormalization scale factorization scale
- variation of heavy quark masses
- use different parameterizations

Application I: Forward Jets

scale uncertainties not too large ! smaller than in coll. fact.
 significant effect of treatment of fact. scale ...?!?

Application I: Forward Jets

scale uncertainties not too large ! smaller than in coll. fact.
 significant effect of treatment of fact. scale ...?!?

Application II: $b\bar{b}$ production at CDF: $b ightarrow J/\psi$

p, (GeV)

Application II: $bar{b}$ production at CDF: $b ightarrow J/\psi$

Variation of: dơ/dp_t (nb/GeV) 0 renorm. scale CDF prel: B - J/PSI $0.25p_t^2 < \mu_r^2 < 4p_t^2$ set BO quark mass: $4.5 < m_b < 5 \text{ GeV}$ 1 factorization scale scale uncertainties small including variation of *b*-mass 10 large effect from fact. scale (factor ~ 2) is that the proper way ??? -2 Iarge effect coming from 10 small k_t cut !!! 10 11 12 13 14 15 16 17 p, (GeV)

different shape of uPDF !!!

Conclusions

- \checkmark watch out k_t effects
- **>** DGLAP: concentrated at small $< k_t >$
- **CCFM:** extend to large $< k_t >$
- ✓ HERA can contribute significantly
- uncertainties in uPDFs:
- > 1st steps to estimate scale uncertainties (w/o full NLO calcs.)
- ✓ renormalization scale uncertainties ok
- ✓ factorization scale uncertainties ????
- need for uPDFlib !!!
- collection of uPDFs, a la PDFlib/LHAPDF, including error estimates
- global fits, including experimental errors treatment needed !!!

 k_t factorization plays significant role at LHC need for further work in uPDF sector !!!