HERA/LHC Workshop CERN, 11th October 2004

Diffractive dijet photoproduction at ZEUS

ALESSIA BRUNI, INFN BOLOGNA

Alessia Bruni, INBMogna

Factorization tests in γp

Real photon ($Q^2 \simeq 0$) can develop hadronic structure \Rightarrow study fact. breaking at HERA

in NLO, suppression of resolved contribution by a factor 3 expected (Klasen & Kramer)

Kinematics

Photoproduction: $Q^2 \simeq 0$

- $y \qquad \mbox{fraction of longitudinal momentum} \\ \mbox{of e taken by γ} \\$
 - γ fraction of longitudinal momentum of γ in hard scattering
- M_X hadronic mass from γ dissociation
- $z_{I\!P}$ fraction of longitudinal momentum of $I\!P$ taken by parton
- $x_{I\!P}$ fraction of longitudinal momentum of p in diffr. exchange

Event selection

- Data sample 99-00 data ($E_e = 27.5 \text{ GeV}, E_p = 920 \text{ GeV}$)
- Integrated luminosity 77.6 pb^{-1}

PHP	no e in detector
selection	$0.20 < y_{JB} < 0.85$
Diffr.	rapidity gap of at least 3 units
selection	$x_{I\!\!P} < 0.035$
dijet	≥ 2 jets with k_T algorithm in lab frame
selection	$E_T^{jet1(2)} > 7.5(6.5) \; { m GeV}$, $-1.5 < \eta^{jet1,2} < 2.0$
\Rightarrow 10673 events are selected	
Background: p-diss events $(16 \pm 4)\%$ subtracted	
non-diffractive events 10% non subtracted	

Event display: dijet in diffractive γp

Alessia Bruni, INBMogna

Data vs MC LO

• MC RAPGAP (direct + resolved) describes shape of $y, x_{I\!\!P}, E_T^{jet}, \eta_T^{jet}$

RAPGAP v3.00 structure functions: p MRSG, γ GRV-G-LO, $I\!\!P$ H1 fit2

Alessia Bruni, INBMogna

 $CERN, 11^{th} October 2004$

Data vs MC LO

• MC RAPGAP (direct + resolved) describes shape of hadronic mass $M_x, z_{I\!P}, x_\gamma$

 ratio data/MC: no suppression of resolved component as described by RAPGAP

Alessia Bruni, INBMogna

Comparison with NLO predictions

- NLO calculations by Klasen and Kramer for partonic level
- corrections to hadron level estimated using RAPGAP MC

Comparison with NLO predictions

corrections to hadron level estimated using RAPGAP MC
corrections in x_γ are not large

Alessia Bruni, INBMogna

Data vs NLO

- $y, x_{I\!\!P}, z_{I\!\!P}, E_T^{jet}, \eta_T^{jet}$
- shape described
- normalization not described, a suppression factor is needed

Alessia Bruni, INBMogna

Data vs NLO -
$$x_{\gamma}$$

 normalization not described, a suppression factor is needed

• the same suppression factor seems to be applied to both resolved and direct components

Alessia Bruni, INBMogna

Diffractive Dijet in Photoproduction - Summary

- Cross sections measured by ZEUS
- Data described by LO MC RAPGAP
- NLO describe shape of data
- \bullet NLO need a suppression factor ~ 0.5
- \bullet Data favour a suppression also of the direct γ component

Next steps:

- double differential cross sections
- ratio of diffractive/total cross section