Precision physics at the LHC

HERA-LHC Workshop, Second plenary meeting Oct 11-13, CERN

Michelangelo Mangano TH Division CERN, Geneva, Switzerland

Theoretical ingredients

- Higher-order matrix elements
 - multiloop computations
 - multilegged LO calculations
 - calculation of differential spectra in presence of cuts at (N)NLO
- Accurate PDFs
 - systematic uncertainties
 - NNLO fits
 - direct use of LHC data?
- Reliable merging with shower MC
 - progress in description of multijet final states
 - merging of NLO and shower (MC@NLO)
- Accurate description of hadronization, underlying event
 - development of new models, with increased realism and more knobs to allow tuning
 - strong efforts to make exp data available for MC tunings

Recent progress in precision tools

- Progress towards fully differential NNLO predictions Atanasiou, Dixon, Melnikov, Petriello
- New NLO parton-level event generators ▷ MCFM (Campbell-Ellis); pp→3jets@NLO (Z.Nagy), ...
- NLO matrix elements in shower MC's (Dobbs (2001), Grace (2002), MC@NLO, (2003)
- New incarnation of old MC codes. Pythia/Herwig=>C++ (2003) with
 - new features, better QCD, better hadronization
- New shower MC codes (Sherpa: Gleisber, Höche, Krauss, Schälicke, Schumann, Winter, 2003), with new:
 - shower algorithms
 - hadronization schemes
- Implementation of new techniques for merging of multijet ME's and shower MC's (Catani, Krauss, Kuhn, Webber (2001), Lönnblad (2002), MLM (2002), Mrenna&Richardson (2003))
- Continued improving of PDF fits and understanding of their systematics

- Progress in all of the above fields has been remarkable in the past few years, and we heard about recent developments during the parallel sessions
- Accurate calculations are not however sufficient:
 - The complexity of the LHC environment is such that tools accuracy must be validated directly on the data
 - The definition and the evaluation of validation strategies will therefore play a very important role in the success of a precision physics programme at the LHC

- Jet physics
- W/Drell-Yan physics
- Top physics
- Underlying event

Jet processes 1. Inclusive jets

Theoretical syst uncertainty at NLO (from scale variation) ~ +-10-20%

PDF uncert (mostly g(x)) growing at large x

What can the Tevatron data teach us?

k_T jets (D=1)

FIG. 3. Difference between data and JETRAD pQCD, normalized to the predictions. The shaded bands represent the total systematic uncertainty. In the bottom plot a HERWIG hadronization contribution has been added to the prediction (open circles).

> Puzzling discrepancy, in view of the fact that at NLO rates for cone-jets with R=0.7 and k_T jets with D=1 are equal to within 1%

At Run II the Exp syst (mostly energy scale) is still too big to draw conclusions

still large E-scale systematics ⇒ a bit premature to feed these data into new PDF fits

Main sources of syst uncertainties (CDF, run I)

At high E_T the syst is dominated by the response to high p_T hadrons (beyond the test beam p_T range) and fragmentation uncertanties

Out to which E_T will the systematics allow precise crosssection measurements at the LHC?

Out to which E_T can we probe the jet structure (multiplicity, fragm function)?

Bandurin and Skachkov, hep-ex/0209039, hep-ex/0207028

Table 8: Rates for $L_{int} = 10 fb^{-1}$ for different intervals of P_t^Z and $\eta^Z (P_{tCUT}^{clust} = 10 GeV/c, P_{tCUT}^{out} = 10 GeV/c, P_{tCUT}^{out} = 10 GeV/c$ and $\Delta \phi \leq 15^{\circ}$).

P_t^Z	$ \Delta \eta^Z $ intervals						all $ \eta^Z $
(GeV/c)	0.0-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-5.0	0.0-5.0
40 - 50	4594	5425	6673	7267	6732	4796	35486
50 - 60	3128	3509	4297	4570	3976	2000	21471
60 - 70	2253	2443	2855	2934	2229	851	13567
70 - 80	1580	1734	1948	1786	1307	341	8692
80 - 90	1152	1148	1267	1236	824	170	5790
90-100	741	859	812	808	523	59	3802
100 - 110	582	590	594	546	305	36	2657
110-120	384	428	451	412	226	8	1905
120-140	523	582	562	531	293	12	2503
140-170	392	380	368	341	190	4	1675
170-200	170	186	162	170	63	2	756
200-240	111	103	99	91	40	0	444
240-300	71	51	44	48	20	0	238

(Z→ee)+jet

P_t^{γ}	η^{γ} intervals						all η^{γ}	
(GeV/c)	0.0-0.4	0.4-0.7	0.7-1.1	1.1-1.5	1.5-1.9	1.9-2.2	2.2-2.6	0.0-2.6
40 - 50	102656	107148	100668	103903	103499	116674	126546	761027
50 - 60	43905	41729	41074	45085	42974	47640	50310	312697
60 - 70	18153	18326	19190	20435	20816	19432	23650	140005
70 - 80	9848	10211	9963	10166	9951	11397	10447	71984
80 – 90	5287	5921	5104	5823	5385	6067	5923	39509
90 - 100	2899	3033	3033	3326	3119	3265	3558	22234
100 - 120	2908	3091	2995	3305	3133	3282	3429	22143
120 - 140	1336	1359	1189	1346	1326	1499	1471	9525
140 - 160	624	643	626	674	706	614	668	4555
160 - 200	561	469	557	555	519	555	557	3774
200 - 240	187	176	186	192	187	185	151	1264
240 - 300	103	98	98	98	100	92	74	665
300 - 360	34	34	33	32	31	27	20	212

γ+jet

 \Rightarrow not enough to probe the E_T~TeV region

2: One more puzzle from run I: x_T ratios

Agreement marginal even at high E_T : pity, since x_T is a powerful observable to tell new physics from PDF effects! **Need for power corrections?**

- QCD physics at LEP taught us that the concept of IR and collinear safety, while essential to justify the use of fixed-order perturbative calculations, does not guarantee the accuracy of such calculations.
 - The impact of power corrections, as well as of the resummation of large logs, is crucial for a faithful description of the data. This is true even at high-Q
- A balance between perturbative accuracy and realism in the description of the physical observables (e.g. in the description of the structure of an experimental jet) is mandatory

- Studies have started to address the issue of resummation and power corrections in hadronic collisions, e.g.:
 - RESUMMED EVENT SHAPES AT HADRON HADRON COLLIDERS. By Andrea Banfi (NIKHEF, Amsterdam), Gavin P. Salam (Paris, LPTHE), Giulia Zanderighi (Fermilab), JHEP 0408:062,2004 e-Print Archive: hep-ph/0407287
- There is however so far not a single concrete analysis of inclusive jet production at the Tevatron going beyond parton-level NLO:
 - lack an understanding of the connection among power corrections to various observables (jet E_T rates, jet shapes, event shapes, etc), similar to

the one we had in e⁺e⁻ and ep.

- inclusion and estimate of the impact of power-corrections is in my view, at this stage, more important than having a NNLO parton-level calculation
- inclusion of jet processes in MC@NLO will be an essential step for any quantitative study (PDF fits, α_{c} extraction, etc) of jets in

hadronic collisions

• Use of jets for precision physics will require the consistency of the complete picture of jet properties: jet shapes, jet correlations, fragmentation functions, heavy quark content, ...

3. Extending NLO accuracy to 3-parton final states: dijet azimuthal correlations at NLO

Shape $\Leftrightarrow \alpha_s \Rightarrow$ good observable to extract α_s ?

see T.Carli, // session

Z.Nagy

- Test of QCD to NNLO: potential accuracy 2% on σ_{tot}
- Luminosity monitor
- Probe of PDF's
- => In view of incomplete detector coverage, need to ensure that the potential NNLO accuracy is reflected in the calculation of acceptancies. The realization of a QCD NNLO event generator, however, will still take some time, especially if a merging with the shower (MC@NNLO) is desired. Is it required?

How the measurement will be done

- Count events N(e) within some cuts, e.g.
 - $E_{T}(e)>20 \text{ GeV}, |\eta(e)|<2.5, MissE_{T}>20 \text{ GeV}$
- Compare against a theoretical simulation subject to the same cuts, or
- Take a MC and evaluate the acceptance A of the cuts, to extract the total cross-section:
 - $\sigma = 1/A N(e)/Lum$
- Same if one is interested in a cross-section defined by the kinematics of the W boson (e.g. dσ/dy_W)
 pp → (Z,γ*)+X

dø∕dY [pb]

The accuracy of the extraction of the cross-section is therefore related to the accuracy of the acceptance calculation

Anastasiou, Dixon, Melnikov, Petriello

Study of acceptance systematics

(MLM and S.Frixione, hep-ph/0405130)

LO: leading order ME, parton level LO+Herwig: leading order ME, plus parton shower

NLO: next-to-leading order ME, parton level

MC@NLO: next-to-leading order ME, plus parton shower $\begin{array}{l} \mathsf{Cuts}\;\mathsf{A} \longrightarrow \left|\eta^{(e)}\right| < 2.5, \, p_{T}^{(e)} > 20 \; \mathsf{GeV}, \, p_{T}^{(\nu)} > 20 \; \mathsf{GeV} \\ \mathsf{Cuts}\;\mathsf{B} \longrightarrow \left|\eta^{(e)}\right| < 2.5, \, p_{T}^{(e)} > 40 \; \mathsf{GeV}, \, p_{T}^{(\nu)} > 20 \; \mathsf{GeV} \end{array}$

	LO	LO+HW	NLO	MC@NLO
Cuts A	0.5249 − <u>7.7</u> %	0.4843	0.4771 + <u>1.5</u> %	0.4845
	↓5.4%		↓7.0%	↓6.3%
Cuts A, no spin	0.5535		0.5104	0.5151
Cuts B	0.0585 + <u>208</u> %	0.1218	0.1292 + <u>2.9</u> %	0.1329
	↓29 %		↓16%	↓18%
Cuts B, no spin	0.0752		0.1504	0.1570

- Large differences between LO and NLO. In large part absorbed improving LO with the parton shower
- Effect of parton shower strongly reduced after NLO effects are included in ME
- Difference between LO+HW and MC@NLO smaller than between NLO/MC@NLO
- Large impact of spin correlations
- ⇒ A MC implementation of NNLO corrections is likely not needed with a 1-2% accuracy goal, provided p_T thresholds are loose enough. Before it is of any use, however, spin correlations must be included.

PDF syst (MRST2001) for absolute rate and acceptances:

$$\sigma(\text{NLO}) = 20900 + 318 \\ -474 \text{ pb}$$

$$A_W(\text{cut 1}) = 0.4770 + 0.0048 \\ -0.0049 \\ A_W(\text{cut 2}) = 0.1292 + 0.0007 \\ -0.0027$$

Uncertainty on acceptance ~ 1/2 uncertainty on full rate

Scale dependence of acceptances at NLO and MC@NLO

	$\mu = \mu_0/2$		$\mu = \mu_0$		$\mu = 2\mu_0$	
	NLO	MC@NLO	NLO	MC@NLO	NLO	MC@NLO
LHC cut 1	0.475	0.485	0.477	0.485	0.478	0.484
LHC cut 2	0.130	0.134	0.129	0.133	0.125	0.132

Smaller dependence with MC@NLO !!

PDF correlations in W→ev

NB: below the ∫ is approximated with a discrete sum over bins

No correlation with the top cross-section (clearly different combinations of flavours)

QED effects

W mass determination:

Source	<u>CDF</u> Run Ib	ATLAS or CMS	$W {\rightarrow} \ l \ \nu$, one lepton species
	30K evts, 84 pb ⁻¹	60M evts, 10fb-1	
Statistics	65 MeV	< 2 MeV	
Lepton scale	75 MeV	15 MeV	most serious challenge
Energy resolution	25 MeV	5 MeV	known to 1.5% from Z peak
Recoil model	33 MeV	5 MeV	scales with Z statistics
W width	10 MeV	7 MeV	ΔΓ _w ≈30 MeV (Run II)
PDF	15 MeV	10 MeV	
Radiative	20 MeV	<10 MeV	(improved Theory calc)
decays			
P _T (W)	45 MeV	5 MeV	P _⊤ (Z) from data,
			$P_T(W)/P_T(Z)$ from theory
Background	5 MeV	5 MeV	
TOTAL	113 MeV	≤ 25MeV	Per expt, per lepton species

QED effects

CERN-PH-TH/2004-022 FNT/T 2004/02

With the level of accuracy reached in the QCD part of the W cross-section calculations, EW effects start becoming important.

Full inclusion of EW effects will require inclusion of QED effects in the PDF (see J.Stirling, // session).

Does HERA have any sensitivity to these effects? => see J.Stirling talk, ep->eγX data

How do we validate these calculations with LHC data?

Comparisons of the Monte Carlo programs HORACE and WINHAC for single-W-boson production at hadron colliders^{*}

C.M. Carloni Calame^{a,b}, S. Jadach^{c,d}, G. Montagna^{b,a}, O. Nicrosini^{a,b} and W. Płaczek^{e,d}

	σ^{tot} [nb]: WITH CUTS						
Program	Born	$\mathcal{O}(\alpha)$	Best				
$W^- \longrightarrow e^- \bar{\nu}_e$							
HORACE	3.23633(12)	3.18707(13)	3.18696 (13)				
WINHAC	3.23629(09)	3.18779(07)	3.18765(06)				
$\delta = (W - H)/W$	$-1.2(4.6) \times 10^{-5}$	$2.3(0.5) \times 10^{-4}$	$2.2(0.5) \times 10^{-4}$				
$W^- \longrightarrow \mu^- \bar{\nu}_{\mu}$							
HORACE	3.23632(12)	3.15990 (12)	3.16013 (13)				
WINHAC	3.23630(07)	3.16418(06)	3.16409 (05)				
$\delta = (W - H)/W$	$-0.6(4.3) \times 10^{-5}$	$1.35(0.05) \times 10^{-3}$	$1.25(0.05) \times 10^{-3}$				
$W^+ \longrightarrow e^+ \nu_e$							
HORACE	4.39341 (16)	4.32186(17)	4.32187 (18)				
WINHAC	4.39328(13)	4.32286(10)	4.32273 (08)				
$\delta = (W - H)/W$	$-3.0(4.7) \times 10^{-5}$	$2.3(0.5) \times 10^{-4}$	$2.0(0.5) \times 10^{-4}$				
$W^+ \longrightarrow \mu^+ \nu_\mu$							
HORACE	4.39340 (16)	4.28255(16)	4.28326 (16)				
WINHAC	4.39336(10)	4.28837(08)	4.28848(08)				
$\delta = (W - H)/W$	$-0.9(4.3) \times 10^{-5}$	$1.36(0.05) \times 10^{-3}$	$1.22(0.05) \times 10^{-3}$				

What is the sequence of steps that will lead to the certification of a W crosssection measurement to the 1-2% level, and of m_W to 20 MeV or less??

> These levels of accuracies will be crucial to extract measurements of EW parameters (e.g. $sin^2\theta_w$).

Low luminosity can play an important role, reducing backgrounds, allowing for lower trigger thresholds, better MissE_T resolution, etc.

Top cross-section

Gluon better known at LHC in the relevant x range

σ_{tt} LHC = 840pb (1 ± 5%_{scale} ± 3%_{PDF})

Scale unc: $\pm 12\%_{NLO} => \pm 5\%_{NLO+NLL}$ => $\pm 3\%_{NLO+NLL}$ with "aggressive" assumptions about $1/N_{mellin}$ terms $\Delta \sigma = \pm 6\% \Leftrightarrow \Delta m = \pm 2$ GeV, comparable to Δm_{direct}

A correlation exists, but it is not perfect. Likely due to the fact that the initial state is not precisely the same:

$$\sigma_{gg}(tt) : \sigma_{qg}(tt) : \sigma_{qq}(tt) = 90\% : 1\% : 10\%$$

$$\sigma_{gg}(jet) : \sigma_{qg}(jet) : \sigma_{qq}(jet) = 45\% : 45\% : 10\%$$

Latest average from Tevatron:

$$m_t = 178.0 \pm 4.3 \implies m_H = 117 \frac{+45}{-68}$$

mostly driven by the new run I DO measurement:

 $m_t = 180.1 \pm 3.6 \text{ (stat.)} \pm 4.0 \text{ (syst.)} \text{ GeV}$

Rely on tree-level tt→lv+4q ME. We know however that ~50% of tt →4j events have 4th jet from ISR, not from top: systematics??

Validation of these "probabilistic" approaches is needed: require more data than available today at the Tevatron

 m_{top} at the LHC: $\Delta m_{top} \sim 1 \text{ GeV}$?

Dilepton

0.6

0.2

0.7

0.1

0.6

1.2

Lepton+jets

large clusters

sample

0.9

1.3

0.1

0.3

0.1

0.1

 \star no UE subtraction

I.2

UE subtraction

I20

0.8

Full Simulation

X

All jets

high pT

sample

0.8

0.7

0.4

0.3

0.4

2.8

*

 $\Delta \mathbf{R}_{clus}$

I.4

X

 \star how do we validate emission off the top quark in the high-pt top sample?

* b fragmentation function

The structure of the underlying event

Mounting experimental evidence (CDF, R.Field in the // sessions) that the UE is the result of multiple semi-hard (minijetlike) interactions

PTmaxT > 0.5 GeV/c

1.0

0.1

0

PTmaxT > 0.5 GeV/c

90

120

• PY Tune A

DF Preliminary

data uncorrected

theory + CDFSIM

60

30

Associated PTsum Density (GeV/c)

PTmaxT

Direction

Jet#1

Region

Jet#2

Region

R.Field/CDF: hep-ph/0201192, Phys.Rev.D65:092002,2002

DF Preliminary

90

120

150

data uncorrected

theory + CDFSIM

60

30

PTmaxT

∆ (degrees)

180 210 240

"Jet#1"

Region

270

300

330

360

And HERWIG (without multiple parton interactions) does not produce enough PTsum in the direction opposite of PTmaxT!

DTmay

 $[\]Rightarrow$ how are final-state colours correlated?

- The fact that the UE is described by multiple semi-hard interactions implies that the tuning of the UE parameters depends on the input PDF.
- Use of UE-sensitive quantities (e.g. jets) in the PDF fits will couple the PDF fitting and PDF-dependent UE tuning!
- The mini-jet nature of the UE implies that the particle and energy flows are not uniformly distributed within a given event:
 - can one do better than the standard uniform, constant, UE energy subtraction?
- Studies of MB and UE should be done early on, at very low luminosity, to remove the effect of overlapping pp events:
 - MB triggers
 - low-E_T jet triggers

Final remarks

- Our tools have significantly improved over the last 2-3 years:
 - inclusion of higher order matrix elements in shower MC's
 - inclusion of NLO corrections in shower MC's
 - differential NNLO spectra
 - better models for the underlying event, and for hadronization
- Proper use of these tools will require validation and tuning against data. The Tevatron experiments are only now developing a culture of MC tuning, along the lines of LEP and HERA. As a result, the control over the theoretical systematic uncertainties in several crucial measurements at the Tevatron and at the LHC is still weak.
- Improvement of our tools, via **theoretical developments** and especially via the development of experimental strategies for the **validation of the theoretical systematics** will be essential to complete a "**precision measurement**" programme at the LHC. The collaboration between MC developers and experimentalists will be fundamental!
- Future progress in the accuracy of MCs may be limited by some intrinsic theoretical difficulty (breaking of factorization, inadequacy of the Markovian evolution, etc)
- Very interesting and rewarding work ahead!