Charm enhancement at the LHC due to nonlinear gluon evolution

Andrea Dainese Padova – University and INFN

Based on

K.J. Eskola, V.J.Kolhinen and R.Vogt, hep-ph/0310111

A.D., R.Vogt, M.Bondila, K.J.Eskola and V.J. Kolhinen, hep-ph/0403098

Outline

- The (x,Q²) range probed with charm at LHC energy
- Effect of nonlinear evolution terms on c-quark production
- Possibility to address the effect in the ALICE experiment

Nonlinear terms in gluon evolution

Charm at $\sqrt{s} = 14$ TeV: x,Q² range (1)

$$\sqrt{s} = 14 \text{ TeV}, \ m_c = 1.2 \text{ GeV}, \ y_{c\bar{c}} = 0, \ p_t \to 0$$

 $Q^2 \approx M_{c\bar{c}}^2 \ge (2m_c)^2 = 5.8 \text{ GeV}^2$
 $x_1 \sim x_2 \ge 2 \times 10^{-4}$

Charm at $\sqrt{s} = 14$ TeV: x,Q² range (2)

• PYTHIA simulation (LO): $gg \rightarrow c\overline{c}$

Charm at $\sqrt{s} = 14$ TeV: x,Q² range (3)

Charm production: pQCD parameters choice

NLO pQCD calc. by R. Vogt

Charm: nonlinear/DGLAP vs pt

- Strongly dependent on choice of mass and scale* (Q²)
- Varies from ×1.5 to ×5
- "Enhancement" limited to p_t < 2 GeV/c

 \implies need to measure D production down to very low $p_{\rm t}$

Caveat: effect currently calculated only at LO

* $\mu_R = \mu_F = Q$

Charm detection in ALICE

- Excellent tracking in $|\eta| < 0.9$ with impact parameter resolution better than 60 μ m for $p_t > 1$ GeV/*c*
- Low field (0.4 T) + K ID via time-of-flight

→ exclusive $D^0 \rightarrow K^-\pi^+$ down to very low p_t (~ 0)

Selection of D⁰ candidates

- Large combinatorial background
- Main selection: displaced-vertex selection
 - pair of tracks with large impact parameters
 - good pointing of reconstructed D⁰ momentum to the primary vertex

Results for pp collisions

Meaurement of D⁰ cross section

How to detect the enhancement?

- The idea is that the effect (enh. only at very low p_t) cannot be mimicked by NLO pQCD
- In practice: <u>consider ratio "Data/Theory" for all reasonable choices of</u> <u>Theory parameters</u>

Conclusions

- Nonlinear effects in gluon evolution imply, at LO, an enhanced (w.r.t. DGLAP based predictions) low-p_t charm production in pp at LHC
- The enhancement depends strongly on the choice of the pQCD scale, and is ~50% in the pessimistic case
- The enhancement survives hadronization to D mesons
- ALICE can measure D production in pp for $0 < p_t < 15$ GeV/c
- The enhancement seems to be detectable, as it cannot be mimicked by "playing" with pQCD parameters

Back-up slides

HERA-LHC Workshop - CERN, October 11, 2004

ALICE detector

L3 Magnet B < 0.5 T: 0.2 T low p_t acceptance, 0.5 T p_t resolution at high p_t

HERA-LHC Workshop - CERN, October 11, 2004

$D^0 \rightarrow K^-\pi^+$: Selection of D^0 candidates

Main selection: displaced-vertex selection

- pair of tracks with large impact parameters
- good pointing of reconstructed D⁰ momentum to the primary vertex

A.D., R.Vogt, M.Bondila, K.J.Eskola and V.J.Kohlinen, hep-ph/0403098