Central Diffraction at the LHC - an Update

- acceptance \& central mass resolution
- bench mark process: $p p \rightarrow p+X+p$

The process: $\mathrm{pp} \rightarrow \mathrm{p}+\mathrm{H}+\mathrm{p}$

Event Characteristics: $d \sigma / d t$ \& $\xi_{\text {min }}$

$-t<1 \mathrm{GeV}^{2}$

$\Rightarrow d N / d t \propto \exp (-10 t)$

ξ acceptance?

\Rightarrow should detect p^{\prime} s down to $\xi \leq 10^{-3}$

Event Characteristics:
 Where do the decay b-jets go?

A typical-symmetricpair of protons

\Rightarrow All the b-jets are confined within $|\eta| \leq 5$.

CMS tracking is extended by forward telescopes on both sides of the IP

- A microstation (T3) at 19 m is an option.

Important part of the phase space is not covered by the generic designs at LHC. TOTEM \oplus CMS Covers more than any previous experiment at a hadron collider.

Total TOTEM/CMS acceptance ($\beta^{*}=1540 \mathrm{~m}$) ;ev2)

In the forward region ($|\eta|>5$): few particles with large energies/small transverse momenta.

Leading proton studies at low β^{\star}

GOAL: New particle states in Exclusive DPE

- L > few $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ for cross sections of $\sim \mathrm{fb}$ (like Higgs)
- Measure both protons to reduce background from inclusive
- Measure jets in central detector to reduce gg background

Challenges:

- $M \sim 100 \mathrm{GeV} \Rightarrow$ need acceptance down to ξ 's of a few \%。
- Pile-up events tend to destroy rapidity gaps $\Rightarrow L<$ few $\cdot 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Pair of leading protons \Rightarrow central mass resolution \Rightarrow background rejection

A 140 GeV Higgs as a bench mark.

A study by the Helsinki group in TOTEM.

Leading proton acceptance \& resolution studies

- $p p \rightarrow p+X+p$ simulated using PHOJET1.12
- Protons tracked through LHC6. 2 optics using MAD8

Uncertainties included in the study:

- Initial conditions at the interaction point
- Transverse vertex position $\left(\sigma_{x, y}=16 \rightarrow 11 \mu \mathrm{~m}\right)$ en;
- Beam energy spread $\left(\sigma_{E}=10^{-4}\right)$
- Beam divergence ($\sigma_{\theta}=30 \mu \mathrm{rad}$)
- Conditions at detector location

- Position resolution of detector ($\sigma_{x, y}=10 \mu \mathrm{~m}$)
- Resolution of beam position determination ($\sigma_{x, y}=5 \mu \mathrm{~m}$)
- Off-sets at detector locations

Update by Jerry Lamsa \& RO

Uncertainties of The Initial Conditions

LHC beams

- beam energy spread (RF, field values, ground movement...)
- resolution of the beam position measurement
- absolute beam position

Interaction vertex

- spread of the coordinates (x, y, z)
- uncertainty of the scattering angle

The Experimental Signatures: $p p \rightarrow p+X+p$

- vertex position in the transverse plane?

Aim at measuring the:

- Leading protons on both sides down to $\Delta \xi \approx 1 \%$
- Rapidity gaps on both sides - forward activity - for $|\eta|>5$
- Central activity in CMS

Need to Measure Inelastic Activity and Leading Protons over Extended Acceptance in η, ξ, φ and -†. Measurement stations (RP's/ $\mu S^{\prime} s$) at locations optimized vs. the LHC beam optics. Both sides of the IP.

Measure the deviation of the leading proton location from the nominal beam axis $(\Rightarrow \xi)$ and the angle between the two measurement locations $(\Rightarrow-t)$ within a doublet.
Acceptance is limited by the distance of a detector to the beam. Resolution is limited by the transverse $v x$ location (small ξ) and by beam energy spread (large ξ).

For Higgs, SUSY etc. heavier states need LP4,5 at 300-400m!

TOTEM ROMAN POT IN CERN FESTBEAM

Potential locations for measuring the leading protons from $O(100 \mathrm{GeV})$ mass DPE.

LHC Beams

Energy spread:

$-\sigma_{E}=1.1 \cdot 10^{-4}$ (fill-to-fill variation $\leq 10^{-4}$, magnets can be controlled to $10^{-6!}$)
Beam position resolution:

- given by the BPM's to $5 \mu \mathrm{~m}$

Absolute beam position:

- introduces an offset $\approx 10 \mu \mathrm{~m}$

Interaction Vertex

Spread of the coordinates: $\left\{\begin{array}{l}\sigma_{x} \approx \sigma_{y} \approx 16 \mu \mathrm{~m} \Rightarrow \text { Interaction Spot } \approx 11 \mu \mathrm{~m} \\ \sigma_{z} \approx 5 \mathrm{~cm} \text { (negligible effect) }\end{array}\right.$
(Note: CMS measures IP independently to $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m} \times 15 \mu \mathrm{~m}$)
a Gaussian in x and y
is assumed

Uncertainty of the scattering angle: $\sigma_{\Theta^{\star} x, y} \approx 30 \mu \mathrm{rad}$ (beam divergence)

- fill-to-fill variations?
- assume that variations in z can be suppressed in off-line analysis

Summary on stability and accuracy

Contribution	Absolute calibration : rel. accuracy $\left(10^{-4}\right)$	Stability $\left(10^{-4}\right)$
Dipoles	≈ 7	<1
Quadrupoles	≈ 2	$4-5$
Others	<1	<1

- The momentum is expected to vary by :
- $4-5 \times 10^{-4} \quad$ over a year
- 1-2 $\times 10^{-4}$ over 24 hours
- The variations are driven mostly by circumference changes that can be measured / predicted to $<5 \times 10^{-5}$ (or better). We can build on the LEP experience!

Detector Distance vs. Beam

Detector distance vs. beam is determined by the beam halo.

$n_{\sigma}=d_{\text {min }} / \sigma_{x, y}(z) \approx 9-15$
Expected halo rate: 6 kHz
(for 43 bunches, $N p=10^{10}$,
$\left.\varepsilon_{N}=1 \mu m, n_{\sigma}=10\right)$
Active detector starts at the distance δ from the physical edge, dis determined by the guard ring/detector design: planar vs. 3D
electrode structures
$\Rightarrow \delta \approx 10-100 \mu \mathrm{~m}$
In this study we use:

$$
\left\{\begin{array}{l}
n_{\sigma}=10 \\
\delta=100 \mu m
\end{array}\right.
$$

Detector Resolution

Detector resolution ($\sigma_{x}=10 \mu \mathrm{~m}$): simulated by smearing the predicted proton hit location according to Gaussian distributions for the two sensor planes per a leading proton detector.

Effect of the spread of the beam position ($\sigma_{x, y}=$ $5 \mu \mathrm{~m}$) at each detector location: accounted for by smearing the detector coordinates with a Gaussian distribution.

Uncertainty in absolute beam position: an offset of $10 \mu \mathrm{~m}$ added to the detector coordinates in correlation.

Possible misalignement of the pair of sensor planes: an offset of $-10 \mu \mathrm{~m}$ introduced for the $2^{\text {nd }}$ sensor plane vs. the $1^{\text {st }}$ one in each detector location.

Leading proton acceptance

Leading Proton Detection

- more than 90% of all diffractive protons are seen!
- proton momentum can be measured with a resolution of few 10-3

Dispersion function - low β^{*} optics (CMS IR)

Momentum loss resolution at 420 m

Resolution improves with increasing momentum loss

Dominant effect: transverse vertex position (at small momentum loss) and beam energy spread (at large momentum loss, $420 \mathrm{~m}) /$ detector resolution (at large momentum loss, 215 m \& 308/338 m)

Mass Acceptance

Both protons are seen with ~ 45% efficiency at $M_{X}=120 \mathrm{GeV}$

Some acceptance down to: $M_{x}=60 \mathrm{GeV}$

308 m \& 420m locations select symmetric proton pairs \Rightarrow acceptance decreases.

Mass resolution at the 308 m and 420 m locations

$\Delta \sigma / \sigma=1.3 \% \rightarrow 1.0 \%$

$$
\begin{aligned}
M_{X} & =140 \mathrm{GeV} \\
\Delta \sigma / \sigma & =6.4 \% \rightarrow 4.6 \%
\end{aligned}
$$

Conclusions

$p p \rightarrow p+X+p$ is an excellent bench mark process for forward physics!

Need to retain experimental approach with the challenges of
(1) detectors beyond 250m, (2) acceptance.

Ongoing further work concentrates on:

- Updating central mass acceptance \& resolution studies
- Improvements in acceptance: Asymmetric pairs
- Improvements in resolution: Independent IP measurement
- Tagging/triggering
$-\mathrm{H} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$
- Novel analysis methods - DLM

Triggering diffractive events at low β^{\star}

Basic trigger conditions for diffractive events

- TOTEM LvL-1 leading proton available at < 220 m from IP, only.
- Asymmetric proton pairs yield worse mass resolution
$\Rightarrow \quad$ for the central states of mass $\leq 180 \mathrm{GeV}$, LVL-1 trigger is independent of the leading protons.
- CMS LvL-1 trigger based on calorimetry \& muon chambers - no track info available at that stage.
- E_{T} threshold of inclusive jet trigger is too high to be useful.
- Pile-up likely to destroy some rapidity gaps ($\sim 2(20)$ inelastic events at $10^{33}\left(10^{34}\right) \mathrm{cm}^{-2}$
s^{-1}) \& cause accidental leading proton pair events (SD+SD)
- Allowed LvL-1 trigger rate for a special diffractive new particle trigger could be ~500 Hz (?)(out of 100 kHz , no prescaling). MinBias ($\mathrm{E}_{\mathrm{T}}>30 \mathrm{GeV}$) $0.22 \mathrm{mb} \Rightarrow 10^{3} / 10^{4}$ suppression at $10^{33} / 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Case study for a 120 GeV Higgs using topological variables (forward E_{T}, jet E_{T} 's, η 's \& ϕ angles) of the 2 -jet final state with a "CMS-like" L1 calorimetry trigger.

120 GeV Higgs Level 1 Trigger Selection

Based on combined likelihood functions of:
(*) most selective trigger variables

- Sum(*) \& difference of jet E_{T}
- Sum \& difference of jet η
- Difference of jet phi (*)
- Forward scalar $E_{T}(3<\eta<5)$ ("rapidity gaps") (*)

Background events (106 events) generated by Phojet:
(4) Non-diffractive: $\quad \mathrm{pp} \rightarrow$ non-diffractive
(5) Single diffractive: $\mathrm{pp} \rightarrow \mathrm{pp}$ *
(6) Double diffractive: $p p \rightarrow p^{\star} p^{\star}$

The event types (1) - (6) were used to calculate the trigger efficiencies. Both charged and neutral particles were considered.

The protons: Protons assumed to have $\approx 1 \%$ energy loss and $110-140 \mathrm{GeV}$ central mass)
The trigger: (1) Rapidity gap of at least two units of η on each side of the event with $2.5<|\eta|<7$.
(2) Transverse energy, E_{T}, is required to be $E_{T}>100 \mathrm{GeV}$ within $|\eta|<2.5$.
(3) Rapidity gaps of $\Delta \eta=2$ in the region $5<|\eta|<7$ were also assessed.

Efficiency Budget - Diffractive Higgs Events

Exclusive diffractive Higgs events ($M_{H}=120 \mathrm{GeV}$)

- Both protons within acceptance of proton taggers
- Both b-jets within Tracker acceptance ($|\eta|<2.5$)
(85%)
(need b-tag to reduce gg background)
- $\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{bb})$
(in SM ~ 68%)
- Efficiency of b-tagging, ε_{b}

$$
\left(\varepsilon_{\mathrm{b}}{ }^{2}=(0.77)^{2} \sim 60 \%\right)
$$

- Level 1 trigger efficiency at $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad(\sim 35 \%)$

Total exclusive diffractive Higgs efficiency:
(~5.5\%)

Improvements under study: b-tag efficiency \& Level 1 trigger efficiency (include other trigger detectors: T2, CASTOR ...)
$\mathrm{H} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$under study...

