Central Diffraction at the LHC - an Update

- acceptance & central mass resolution

- bench mark process: $pp \rightarrow p + X + p$

The process: $pp \rightarrow p + H + p$

Event Characteristics: $d\sigma/dt \& \xi_{min}$

 $-t < 1 \text{ GeV}^2$

 ξ acceptance?

Event Characteristics: Where do the decay b-jets go?

CMS tracking is extended by forward telescopes on both sides of the IP

- A microstation (T3) at 19m is an option.

Important part of the phase space is **not** covered by the generic designs at LHC. **TOTEM** \oplus **CMS** Covers more than any previous experiment at a hadron collider.

In the forward region ($|\eta| > 5$): few particles with large energies/small transverse momenta.

Leading proton studies at low β^*

GOAL: New particle states in Exclusive DPE

- L > few $\cdot 10^{32}$ cm⁻² s⁻¹ for cross sections of ~ fb (like Higgs)
- Measure <u>both</u> protons to reduce background from inclusive
- Measure jets in central detector to reduce gg background

Challenges:

- M \sim 100 GeV \Rightarrow need acceptance down to $\xi 's$ of a few ‰
- Pile-up events tend to destroy rapidity gaps \Rightarrow L < few $\cdot 10^{33}$ cm⁻² s⁻¹
- \bullet Pair of leading protons \Rightarrow central mass resolution \Rightarrow background rejection

A 140 GeV Higgs as a bench mark.

A study by the Helsinki group in TOTEM.

Leading proton acceptance & resolution studies

- pp \rightarrow p + X + p simulated using PHOJET1.12
- Protons tracked through LHC6.2 optics using MAD8

Uncertainties included in the study:

- Initial conditions at the interaction point
 - Transverse vertex position ($\sigma_{x,y} = 16 \rightarrow 11 \ \mu m$), $\sigma_{x,y} = 16 \rightarrow 11 \ \mu m$), $\sigma_{x,y} = 16 \rightarrow 11 \ \mu m$), $\sigma_{x,y} = 10^{-4}$) Beam divergence ($\sigma_{\theta} = 30 \ \mu rad$) ions at detector location
- Conditions at detector location
 - Position resolution of detector ($\sigma_{x,y}$ = 10 μ m)
 - Resolution of beam position determination ($\sigma_{xy} = 5 \mu m$)
 - Off-sets at detector locations

Update by Jerry Lamsa & RO

Uncertainties of The Initial Conditions

LHC beams

- beam energy spread (RF, field values, ground movement...)
- resolution of the beam position measurement
- absolute beam position

Interaction vertex

- spread of the coordinates (x,y,z)
- uncertainty of the scattering angle

The Experimental Signatures: $pp \rightarrow p + X + p$

vertex position in the transverse plane?
 b-jet
 Detector
 P₁'
 P₁'
 Detector
 P₁'
 Detector
 Detector</

Aim at measuring the:

- Leading protons on both sides down to $\Delta\xi\approx$ 1‰
- Rapidity gaps on both sides forward activity for $|\eta|$ > 5
- Central activity in CMS

Need to Measure Inelastic Activity and Leading Protons over Extended Acceptance in η , ξ , ϕ and -t. Measurement stations (RP's/ μ S's) at locations optimized vs. the LHC beam optics. Both sides of the IP.

Measure the <u>deviation</u> of the leading proton location from the nominal beam axis ($\Rightarrow \xi$) and the angle between the two measurement locations (\Rightarrow -t) within a doublet.

Acceptance is limited by the <u>distance</u> of a detector to the beam. Resolution is limited by the <u>transverse vx location</u> (small ξ) and by <u>beam energy spread</u> (large ξ).

For Higgs, SUSY etc. heavier states need LP4,5 at 300-400m!

Potential locations for measuring the leading protons from O(100 GeV) mass DPE.

LHC Beams

Energy spread:

 $-\sigma_{E}$ = 1.1·10⁻⁴ (fill-to-fill variation \leq 10⁻⁴, magnets can be controlled to 10⁻⁶!)

Beam position resolution:

- given by the BPM's to 5 μm
- Absolute beam position:
- introduces an offset ${\approx}10\mu\text{m}$

Interaction Vertex

Spread of the coordinates: $\begin{cases} \sigma_x \approx \sigma_y \approx 16 \ \mu m \Rightarrow \text{Interaction Spot} \approx 11 \ \mu m \\ \sigma_z \approx 5 \text{cm} \ (\text{negligible effect}) \end{cases}$

(Note: CMS measures IP independently to $10\mu m \times 10\mu m \times 15\mu m$)

a Gaussian in x and y is assumed

Uncertainty of the scattering angle: $\sigma_{\Theta^* \times, y} \approx 30 \mu rad$ (beam divergence)

• fill-to-fill variations?

• assume that variations in z can be suppressed in off-line analysis

Summary on stability and accuracy

Contribution	Absolute calibration : rel. accuracy (10 ⁻⁴)	Stability (10 ⁻⁴)
Dipoles	≈ 7	< 1
Quadrupoles	≈ 2	4-5
Others	< 1	< 1

- The momentum is expected to vary by :
 - 4-5 ×10⁻⁴ over a year
 - 1-2 ×10⁻⁴ over 24 hours
- The variations are driven mostly by circumference changes that can be measured / predicted to < 5 × 10⁻⁵ (or better). We can build on the LEP experience !

Jorg Wenninger, CERN -04

Detector Distance vs. Beam

Detector distance vs. beam is determined by the beam halo.

$$n_{\sigma} = d_{min} / \sigma_{x,y}(z) \approx 9-15$$

Expected halo rate: 6kHz (for 43 bunches, Np = 10^{10} , $\epsilon_N = 1\mu m$, $n_\sigma = 10$)

Active detector starts at the distance δ from the physical edge, δ is determined by the guard ring/detector design: *planar* vs. *3D* electrode structures $\Rightarrow \delta \approx 10-100 \mu m$

In this study we use:

 $\begin{cases} n_{\sigma} = 10 \\ \delta = 100 \mu m \end{cases}$

Detector Resolution

Detector resolution ($\sigma_x = 10\mu m$): simulated by smearing the predicted proton hit location according to Gaussian distributions for the two sensor planes per a leading proton detector.

Effect of the spread of the beam position ($\sigma_{x,y}$ = 5µm) at each detector location: accounted for by smearing the detector coordinates with a Gaussian distribution.

Uncertainty in absolute beam position: an offset of $10\mu m$ added to the detector coordinates in correlation.

Possible misalignement of the pair of sensor planes: an offset of -10 μ m introduced for the 2nd sensor plane vs. the 1st one in each detector location.

Leading proton acceptance

Leading Proton Detection

- more than 90% of all diffractive protons are seen!
- \cdot proton momentum can be measured with a resolution of few 10⁻³

Dispersion function - low β^* optics (CMS IR)

horizontal offset = $\xi \cdot D_x$ (ξ = momentum loss)

For a 2.5 mm offset of a $\xi \sim 0.5$ % proton, need dispersion ≥ 0.5 m. \Rightarrow Proton taggers to be located at > 250 m from the IP (i.e. in a "cryogenic section" of the LHC).

Momentum loss resolution at 420 m

Resolution improves with increasing momentum loss Dominant effect: transverse vertex position (at small momentum loss) and beam energy spread (at large momentum loss, 420 m)/detector resolution (at large momentum loss, 215 m & 308/338 m)

Mass Acceptance

Mass resolution at the 308m and 420m locations

 M_{\times} = 140 GeV

$$\Delta\sigma/\sigma$$
 = 1.2% \rightarrow 0.9%

$$\Delta\sigma/\sigma$$
 = 1.3% \rightarrow 1.0%

$$M_{\rm X} = 140 \; \text{GeV}$$

$$\Delta\sigma/\sigma = 6.4\% \rightarrow 4.6\%$$

Conclusions

 $pp \rightarrow p$ + X + p is an excellent bench mark process for forward physics!

Need to retain **experimental approach** with the challenges of (1) detectors beyond 250m, (2) acceptance.

Ongoing further work concentrates on:

- Updating central mass acceptance & resolution studies
- Improvements in acceptance: Asymmetric pairs
- Improvements in resolution: Independent IP measurement
- Tagging/triggering
- $-H \rightarrow W^+W^-$
- Novel analysis methods DLM

Triggering diffractive events at low β^*

Basic trigger conditions for diffractive events

- TOTEM LvL-1 leading proton available at < 220 m from IP, only.
- Asymmetric proton pairs yield worse mass resolution
 - \Rightarrow for the central states of mass \leq 180 GeV, LvL-1 trigger is independent of the leading protons.

• CMS LvL-1 trigger based on calorimetry & muon chambers - no track info available at that stage.

• E_T threshold of inclusive jet trigger is too high to be useful.

• Pile-up likely to destroy some rapidity gaps (~2(20) inelastic events at $10^{33}(10^{34})$ cm⁻² s⁻¹) & cause accidental leading proton pair events (SD+SD)

• Allowed LvL-1 trigger rate for a special diffractive new particle trigger could be ~500 Hz (?)(out of 100 kHz, no prescaling). MinBias (E_T > 30 GeV) ~ 0.22 mb \Rightarrow 10³/10⁴ suppression at 10³³/10³⁴ cm⁻² s⁻¹

Case study for a 120 GeV Higgs using topological variables (forward E_T , jet E_T 's, η 's & ϕ -angles) of the 2-jet final state with a "CMS-like" L1 calorimetry trigger.

- Efficiency includes "usefulness" cuts (protons & b-jets seen)
- Will be repeated with complete CMS trigger simulation
- Improvements should be possible by using also T2 & CASTOR

120 GeV Higgs Level 1 Trigger Selection

Based on combined likelihood functions of:

- Sum(*) & difference of jet E_T
- $\boldsymbol{\cdot}$ Sum & difference of jet η
- Difference of jet phi (*)
- Forward scalar E_T (3 < η < 5) ("rapidity gaps") (*)

Background events (10⁶ events) generated by Phojet:

 $\begin{array}{ll} \mbox{(4) Non-diffractive:} & pp \rightarrow \mbox{non-diffractive:} \\ \mbox{(5) Single diffractive:} & pp \rightarrow \mbox{pp*} \\ \mbox{(6) Double diffractive:} & pp \rightarrow \mbox{p*p*} \end{array}$

The event types (1) - (6) were used to calculate the trigger efficiencies. Both charged and neutral particles were considered.

The protons:	Protons assumed to have ${pprox}1\%$ energy loss and
·	110-140 GeV central mass)
The trigger: (1)	Rapidity gap of at least two units of η on each side of
	the event with 2.5 < $ \eta $ < 7.
(2)) Transverse energy, E_T , is required to be $E_T > 100 \text{ GeV}$
(2)	within $ \eta < 2.5$.
(3)	assessed.

Efficiency Budget - Diffractive Higgs Events			
Exclusive diffractive Higgs events (M _H = 120 GeV)			
• Both protons within acceptance of proton taggers (45 %)			
 Both b-jets within Tracker acceptance ((need b-tag to reduce gg background) 	η <2.5) (85 %)		
• Br (H→bb)	(in SM ~ 68 %)		
• Efficiency of b-tagging, $\epsilon_{\rm b}$	(ε _b ² =(0.77) ² ~ 60 %)		
• Level 1 trigger efficiency at 10 ³³ cm ⁻² s ⁻¹	(~ 35 %)		
Total exclusive diffractive Higgs efficiend	cy: (~ 5.5 %)		

Improvements under study: b-tag efficiency & Level 1 trigger efficiency (include other trigger detectors: T2, CASTOR ...)

 $H \rightarrow W^+W^-$ under study...