

$gg \rightarrow H$ for different MC's: uncertainties due to jet veto

Giovanna Davatz, ETH Zurich

HERA/LHC Workshop, CERN 11th -13th October 2004

Uncertainty of jet veto efficiency: PYTHIA, HERWIG, MCatNLO

- Without underlying events
- With underlying events (ATLAS, CDF tunings)
- Including HO QCD corrections with effective K-factors
- CASCADE

Motivation

gg→H→WW→IvIv :

- Higgs discovery channel between 2M_w and 2M_z
- Dominant background: nonresonant WW, ttbar and Wtb

jet veto crucial to reduce top-background

→ get uncertainty of jet veto for different Monte Carlos

Comparison between

PYTHIA 6.225, HERWIG 6.505 and MCatNLO 2.31

- NO underlying events
- M(Higgs) = 165 GeV, M(top) = 175 GeV
- HERWIG: $gg \rightarrow H$: no hard ME Corrections

PYTHIA, **MCatNLO** : with ME Corrections (PYTHIA: m(top) $\rightarrow \infty$, MCatNLO exact)

pdf	MCatNLO:		CTEQ 5M1
	PYTHIA, HERWIG	:	CTEQ 5L
CTEQ5M1 (NLO)	α _s (Mz)=0.118	$\Lambda_{QCD}^4 = 0.326$	$\Lambda_{QCD}^5 = 0.226$
CTEQ5L (LO)	α _s (Mz)=0.127	$\Lambda_{QCD}^4 = 0.192$	$\Lambda_{QCD}^5 = 0.146$
Ласр	PYTHIA:	MRST(3)= 2 (Λας	$D = \Lambda_{QCD} \text{ of pdf)}$
	HERWIG:		QCDLAM= 0.18
	MCatNLO:	LAN	IDAFIVE =0.226

pt Higgs varies for different MC's

pt Higgs versus jet pt

```
for this study:
Cone algorithm
pt jet>20 GeV, |η| jet<4,5, R=0.5,
pt seed>1 GeV
```

```
pt Higgs balanced by one or more jets \rightarrow similar but not identical pt spectrum
```

Apply jet veto of 30 GeV \rightarrow get the efficiency

Efficiency for the jet veto

Differences vary over the pt spectrum:

eg :

- pt H < 20 GeV: differences very small
- pt H ≈ 50 GeV : difference around 30%

Integrated efficiency over whole pt spectrum:

	3
ΡΥΤΗΙΑ	0.62
HERWIG	0.63
MCatNLO	0.59

 \rightarrow efficiency spread < 5%

To understand differences between the MC's: look at particular pt Higgs regions

A) pt Higgs < 30 GeV

B) 30 GeV ≤ pt Higgs <100 GeV

C) pt Higgs ≥100 GeV

A) pt Higgs < 30 GeV

essentially identical distributions, minor effects for very high pt

B) $30 \text{ GeV} \le \text{pt Higgs} < 100 \text{ GeV}$

max jet pt

multiplicity

max jet rapidity

C) 100 GeV ≤ pt Higgs

max jet pt

multiplicity

max jet rapidity

$gg \rightarrow H \rightarrow WW \rightarrow I_V I_V$ selection with all cuts

 $gg \rightarrow H \rightarrow WW \rightarrow IvIv$ selection (GD et al jhep05(2004)009) shows:

small pt Higgs region most important

→ for our region of interest efficiency of jet veto does not vary much for different MC's !

HERWIG + ME Corrections

if hard ME corrections included * \rightarrow more jets with high pt \rightarrow total σ the same \rightarrow less jets with low pt \rightarrow overall efficiency ≈ 0.55 (10% smaller than for HERWIG 6.505)

* This preliminary HERWIG + hard ME version was provided by G. Corcella (see Phys.Lett.B 590 (2004)249-257)

HERWIG + ME Corrections

Pythia + Herwig: Similar rapidity shape also for pt Higgs>100 GeV

So far all events WITHOUT underlying events generated

\rightarrow Estimate uncertainty for UE according to the CDF and ATLAS tunings for PYTHIA

Current PYTHIA tunings (used in CMS production)

R. Field; CDF UE tuning method

Comments	CDF – Tune A (PYTHIA6.206)	PYTHIA6.214 – Tuned (ATLAS)
Generated processes (QCD + low-pT)	Non-diffractive inelastic + double diffraction (MSEL=0, ISUB 94 and 95)	Non-diffractive + double diffraction (MSEL=0, ISUB 94 and 95)
p.d.f.	CTEQ 5L (MSTP(51)=7)	CTEQ 5L (MSTP(51)=7)
Multiple interactions models	MSTP(81) = 1 MSTP(82) = 4	MSTP(81) = 1 MSTP(82) = 4
pT min	PARP(82) = 2.0 PARP(89) = 1.8 TeV PARP(90) = 0.25	PARP(82) = 1.8 PARP(89) = 1 TeV PARP(90) = 0.16
Core radius	40% of the hadron radius (PARP(84) = 0.4)	50% of the hadron radius (PARP(84) = 0.5)
Gluon production mechanism	PARP(85) = 0.9 PARP(86) = 0.95	PARP(85) = 0.33 PARP(86) = 0.66
a_{s} and K-factors	MSTP(2) = 1 MSTP(33) = 0	MSTP(2) = 1 MSTP(33) = 0
Regulating initial state radiation	PARP(67) = 4	PARP(67) = 1

Jet veto efficiency with underlying events (PYTHIA)

ATLAS Tune, CDF Tune A, PYTHIA default

ATLAS Tune, CDF Tune A, PYTHIA no UE

CDF Tune A, PYTHIA default, PYTHIA no UE

	Total E	€ for pt ^H < 80 GeV
CDF tune A	0.596	0.709
ATLAS tune	0.600	0.706
PYTHIA default	0.613	0.723
PYTHIA no UE	0.620	0.730

- CDF and ATLAS tuning ≈ same €
- PYTHIA default and tuned PYTHIA: difference < 1 %
- PYTHIA with and without UE: difference < 1%

Reweighting procedure (*GD et al. jhep05(2004)009*) Simple method to include HO QCD corrections

gg→H→WW→lvlv :

pt Higgs balanced by pt jets

cannot use const. K-factor (because of jet veto)

Reweight Pythia with effective pt-dependent K-factors

Very promising results!

(for $M_{\rm H}$ =165 GeV, 5 σ with already 0.4 fb⁻¹)

Results:

Integrated efficiency for PYTHIA, HERWIG and MCatNLO and after reweighting

	3	د reweighted
Pythia 6.225	0.62	0.56
Herwig 6.505	0.63	0.60
MCatNLO 2.31	0.59	0.57

Efficiency for the jet veto including CASCADE

Difference due to missing quark induced processes in CASCADE ?

If so, way to distinguish quark and gluon induced processes!

Direct measurement at HERA for LHC..

under study

Conclusions

- The total efficiencies for HERWIG, MCatNLO and PYTHIA vary around 5%
- In the region of interest for the gg ${\rightarrow} H {\rightarrow} WW {\rightarrow} IvIv$ signal selection, the difference is even smaller
- The different PYTHIA tunings for the underlying event lead to about the same efficiency
- The difference in the efficiency between PYTHIA with and without UE is smaller than 1%

Special thanks to A.Nikitenko, A.Holzner, G.Corcella, T.Sjostrand, M.Dittmar, H.Jung

backup

Cross sections

Les Houches 2003 proceedings

Discovery Luminosity as a function of Higgs Mass

$gg \to H \to WW \to I \nu I \nu$ signal selection, M_{H} = 165 GeV

Cuts based on Phys. Rev. D 55 (1997) 167 and CMS Note 1997-083, M.Dittmar, H.Dreiner

Signal: $gg \rightarrow H \rightarrow WW \rightarrow IvIv$

2 isolated leptons, small opening angle between leptons, missing p_T , no jets

```
\label{eq:solution} \begin{array}{ll} \mbox{'irreducible' background} \\ \mbox{Nonresonant WW production, ttbar and Wtb}: \\ \mbox{pp} \rightarrow WW \rightarrow IvIv & [7.38 \, \text{pb}] & \mbox{cut on angle betw. I's, M}_{II}, p_T \mbox{ I's, M}_{II}, p_T
```

Study with PYTHIA 6.210 and simple CMS geometrical acceptance