αs from jet production at hadron colliders

Hasko Stenzel

HERA-LHC workshop – October 11-13, 2004

Outline

- Introduction
- single inclusive jet cross section
- α_s dependence of the total cross sections
- sensitivity of differential jet cross section α_s
- parameterisation of the differential cross section
- extraction of α_s
- systematic uncertainties
- Conclusion

Introduction

Master Formula:

 $\sigma(pp) \rightarrow jets + X =$ $\sum_{a,b} \int dx_1 dx_2 f_a(x_1, Q^2, \alpha_s) f_b(x_2, Q^2, \alpha_s) \hat{\sigma}_{ab}(x_1 p_1, x_2 p_2, Q^2, \alpha_s)$ $\hat{\sigma}_{ab} = a \cdot \hat{\sigma}_{LO} \cdot \alpha_s^2 + b(\mu) \cdot \hat{\sigma}_{NLO} \cdot \alpha_s^3$

For cross section calculations the same value of α_s should be taken in PDFs and in σ (partonic).

The total cross section exhibits a clear and almost linear dependence on $\alpha_{s.}$ \rightarrow sensitivity to $\alpha_{s.}$!

Single inclusive jet cross section

Jet finding: Cone algorithm R=0.7

Theoretical calculation: DYRAD NLO and $\mu_R = \mu_F = E_{T,jet}$

HERA-LHC Workshop October 11-13, 2004

4

Sensitivity of differential jet cross section to α_s

HERA-LHC Workshop October 11-13, 2004

H. Stenzel - a_s from jet production at hadron colliders

Parameterisation of normalised cross section

Linear parameterisation in each bin of E_T

$$\sigma_{jets}(E_T, \alpha_s) = A(E_T) + B(E_T) \cdot \alpha_s$$

Extraction of α_s from a given cross section measurement

$$\alpha_{s}(E_{T}) = \frac{\sigma_{jets}(E_{T}) - a(E_{T})}{b(E_{T})}$$

6

HERA-LHC Workshop October 11-13, 2004 H. Stenzel - a s from jet production at hadron colliders

Global parameterisation used to extract $\alpha_s(E_T)$ from MRSAP 'data'

Ratio of extracted/generated (PDF) Λ

Systematic uncertainties for α_s : PDF

PDF	TEVATRON 0.1< η <0.7	LHC 0.0< η <1.5
CTEQ4M	+0.0020	+0.0023
GRV94	-0.0015	-0.0028
MRSAP	-0.0011	+0.0006

Systematic uncertainty related to the functional form

CTEQ4M	0.0009	0.0002
GRV94	0.0014	0.0002
MRSAP	0.0011	0.0006

Systematic uncertainties for α_s : scales

Variation of renormalisation scale (μ_R) and factorisation scale (μ_F)

Scale	TEVATRON 0.1< η <0.7	LHC 0.0< η <1.5
xμ _R = xμ _F =2.0	-0.0020	+0.0013
xμ _R =2.0 xμ _F =0.5	+0.0098	+0.0068
xμ _R =0.5 xμ _F =2.0	-0.0059	-0.0035
xμ _R =xμ _F =0.5	+0.0018	-0.0007

Summary of systematic uncertainties

HERA-LHC Workshop October 11-13, 2004 H. Stenzel - a_s from jet production at hadron colliders 10

Summary of systematic uncertainties for α_s

Variation of renormalisation scale (μ_R) and factorisation scale (μ_F)

Source	TEVATRON 0.1< η <0.7	LHC 0.0< η <1.5
PDF	+0.0020	+0.0023
	-0.0015	-0.0028
parameterisation	±0.0014	± 0.0006
scales	+0.0098	+0.0068
	-0.0059	-0.0036
Total	+0.0101	+0.0072
	-0.0059	-0.0045

HERA-LHC Workshop October 11-13, 2004 H. Stenzel - a_s from jet production at hadron colliders 11

Application to TEVATRON data

Test of the method with D0 data from RUN1

HERA-LHC Workshop October 11-13, 2004 H. Stenzel - a_s from jet production at hadron colliders 12

Conclusions & Prospects

- Parameterisation of jet cross setions as function of α_s
- Requires PDFs with variable α_s
- Extraction of α_s from normalised differential cross section measurement
- Systematic uncertainties at LHC 5-10%, scale dominated
- Hadronisation corrections to be investigated
- Experimental uncertainty (energy scale, jet algorithm,...) to be evaluated
- Observation of the running of from 300 GeV to 3 TeV