W+/W⁻ and I+/I⁻

A Means to investigate PDFs

T. Schörner-Sadenius, G. Steinbrück Hamburg University

HERA-LHC Workshop, CERN, October 2004

Idea, Motivation, Plan

... still to be worked on ;-)

- Find a means to investigate PDFs.
- Choose cross-section ratios because uncertainties and efficiencies may cancel to some extent. Choose channels with large statistics!
 - W+/W-
 - e^{+}/e^{-} (and μ^{+}/μ^{-})
- Use of various MC models / calculations, latest PDFs:
 - MC@NLO
 - HERWIG / PYTHIA
 - CTEQ6 with 40 error sets
- Take into account detector effects:
 - Rough estimates of efficiencies, jet fake rates and charge miss-identification probabilities in macro running on hbook ntuples.
 - Later (starting now): Use of full CMS simulation/reconstruction chain at least for
 - central (CTEQ6m) signal scenario (to compare with `fast detector simulation')
 - Main background source(s) (large jet sample).
 - Try to estimate necessary luminosity/measurement precision and maximum tolerable miss-ID probabilities etc.

HERWIG

... central scenario for the time being ...

- HERWIG 6.505
- With CTEQ6m and 40 error PDFs.
- Process ID 1499; selected only leptonic W decays.
- Full event simulation (parton shower, heavy particle decays, cluster formation, cluster decay, soft underlying event) → necessary for meaningful comparison with MC@NLO statements?

→ slow! CPU is some limitation if going for full error evaluation.

- So far about 100k events for each PDF.
- For cross-checks also CTEQ6m sample (100k events) with only hard event generated.

→ No parton shower generated; W has not p_T .

MC@NLO

... To estimate influence of higher orders....

- HERWIG 6.504
- With CTEQ6m
- Requires also full event generation chain \rightarrow also slow.
- Generated so far 60k for both process IDs –1497 and –1498 (separately for W⁺ and W⁻).

Jet Fake Rate, Charge Miss-ID

Just rough estimates so far ...

- Fake rate:
 - Increasing from 1% (eta=0) to 5% (eta>=5).
 - Effect: Boson / lepton ratio = 1 !
- Charge miss-identification probability:
 - In eta: increasing from 0% (eta=0) to 10% (|eta|>=5)
 - In p_T : increasing from 0% (p_T =0 GeV) to 5% (p_T =100 GeV)
 - Sum both contributions.
 - Effect: Washes out boson / lepton ratios
- Fold both effects using
 - For e⁺: fill e⁺ histo with wtx*(1-chargemissidprob+fakerate) fill e⁻ histo with wtx*(chargemissidprob+fakerate)
 - And vice versa for e⁻.
 - Then divide e⁺ histo by e⁻ hist.
- Efficiencies not considered
 - ➔ Assume same efficiencies for both charges so that effects cancel (small error?).

Jet Fake Rate, Charge Miss-ID

Just rough estimates so far ...

Results: W⁺ and W⁻ distributions

- Soft lepton selection: p_T > 20 GeV, leta|<2.5

- Clear shape differences between W⁺ (left) and W⁻ (right) samples, especially in eta.

Results: e⁺ and e⁻ distributions

- Soft lepton selection: p_T > 20 GeV, |eta|<2.5

- Clear shape differences between e⁺ (left) and e⁻ (right) samples, especially in eta.

Results: W⁺/W⁻ ratios

Results: Ratio μ^+/μ^- Not taking any fake rate effects etc. into account

muon distributions ratio μ^{+}/μ^{-} tiv 11 oti 2 All leptons from semileptonic 1.5 W decays without any 1 sigificant lepton selection. 0.5 0.5 0 $p_{\rm T}^{10^2}$.2 0 2 10 2.5ratio μ^{+}/μ^{-} Soft lepton selection: 2 1.5 1.5 $p_{T} > 20 \text{ GeV}, |eta| < 2.5$ 1 (and $E_{T,miss} > 20 \text{ GeV}$) 0.5 0.5 0 $\frac{10^2}{P_T}$ -2 0 2 10 2.5 ratio μ^{+}/μ^{-} Hard lepton selection: Statistics! $p_T > 40$ GeV, |eta|<2.5 (and $E_{T,miss} > 20$ GeV) 1.5 1 0.5 0

Nice sensitivity to PDF especially at low p_{T} .

TSS: W*/W*. I*/

Results: Ratio e⁺/e⁻

... as function of eta

Results: Ratio e⁺/e⁻

... as function of p_T

With detector effects: Less spread between PDFs, lower ratios

TSS: W⁺/W⁻, l⁺/l⁻

Effect of NLO: e⁺ and e⁻ in eta

Results: MC@NLO for Ratio e⁺/e⁻

Without fake rates etc.

Very large effects of NLO corrections at large pseudorapidities.

Further Plans

... where to go from now?

- Discuss what we have done so far. Any suggestion is welcome.
- Try to get more MC statistics to get statistically more meaningful statements
 - Which statistics/precision do we need?
 - Which fake rates can we tolerate?
 - Which charge miss-ID?
 - Other effects?
- Try other observables?
- Propagate detector effects to W ratios.
- Try to get real CMS detector simulation (signal with one PDF, one background) → judge on fake rates etc.
 - G. Steinbrück is currently setting up the software to run on GridKa / grid computers at DESY.
- Your Feedback: Is it worthwhile going in this direction?

Summary

... where to go from now?

- Sensitivity to PDFs is large for some observables and cut scenarios. (medium cuts, low p_T)
- Effects washed out by detector effects.
- NLO seem to be big.
- ????????