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| Outline

® [ntroduction
#® Why NNLO?
» Why differential?

#» Method I: Inclusive and semi-inclusive phase-space
Integrations

#» W, Z boson rapidity distributions

#» Method Il: Arbitrarily differential phase-space
Integrations

#» Differential distributions for Higgs boson production via

gluon fusion I



| WhyNNLO?

® Precision measurements for processes with large
cross-sections and clean experimental signals

9
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#» Trustworthy separation of perturbative (structure
functions) from non-perturbative (pdf’s) physics.

#» Cross-sections with slowly convergent perturbative
expansion
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I Why differential ?

» Computing at NNLO Is a challenge (discover and automate

very sophisticated methods)

#® \ery good record for total cross-sections+decay rates

eTe~ — hadrons, DIS, Drell-Yan, Higgs boson production, etc

» Total cross-sections are
observables:

$ ignore detector+other acceptances
® not possible to attach shower+hadronization
o
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| Technical challenges

#® Total cross-sections: Integrations over the
phase-space are very similar to loop integrations
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» Use loop-methods

® Infrared singularities pop easily out by doing “loop-integrations”.

#® Phase-space integrals for differential distributions
require a very different treatment

#® Infrared singularities must be extracted before the integrations
o

#» It is technically a big challenge to move from inclusive I

cross-sections to differential distributions.



I Electroweak gauge boson rapidity distr.
"

P, = (EcoshY ,pr, Esinh’

» First differential distribution at NNLO in QCD.
#» By doing a “total cross-section” calculation

d 2p1 - P 2y
_UN/d(Phase-Space) 5(u— Pl 7), u= 1
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#» Applicable to a multitude of “semi-inclusive” quantities
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| Physics infor mation of do/dY

# High precision measurements at fixed-target collisions
(E866), the Tevetron, and the LHC.

# Standard caddle: extract pdf’s and partonic
luminosities

M
4o = |quark density|, (E

M
— — eY> x [quark density], ( -

cm

ey> + O (as)

# Precision electroweak measurements at hadron
colliders

$» weak mixing angle from forward-backward asymmetry

» W-mass measurements (sensitive to pdf’s)

#» Determination of new gauge boson couplings to

quarks, ... I



On-shell.Z boson at theLHC
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®» small NNLO scale uncertainty: (30% — 25%)(LO) — (6%)(NLO) — 0.1%(Y =
0) — 1%(Y < 3) — 3%(Y ~ 4)(NNLO)

» shape stabilizes at NNLO



On-shell.Z boson at the Tevatron

pp - (Z,7")+X
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small (2%) scale variation at LO - non-monotonic behaviour
proper NLO variation (2% — 5%), < 1% at NNLO
RINLO r~ 20% — 45%, SZMNLO. ~ 3%, — 4%

OLO

L I I



MRST versus Alekhin

pp-(Z,7")+X

RIS Alekhin .
K R R
70 R o, ]
2RISR
ALK IIRCAXRIVERKRS
> - R RIERIERS 1
K I RIS -
} | ‘t‘\:& \’f
MRST

2 e
o _
~ L
\
2 -
o _
\
b 50 —
[AY]
o - Vs = 14 TeV

i M = MZ

| M/Rsus2M

40 1 1 1 1 | 1 1 1 1 | 1
0 1 2 3
Y

P Alekhin set: DIS data only - NNLO consistent
P MRST set: Global analysis
P Indistinguishable at NLO



MRST versus Alekhin

pp-(Z,7")+X
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Alekhin set: DIS data only - NNLO consistent
MRST set: Global analysis
Indistinguishable at NLO
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NNLO can resolve the discrepancies



| L ow energy DY production (E8S866)

pp~>7"+X Rapidity distribution
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# NNLO distribution sharper in central rapidity regions.

# Data lower than NNLO — smaller g densities I



| Fixed order partonic Monte-Carlos

® A cross-section Is:

o = Z/d(Phase-Spacen) .

x Observable (PhaseSpace vars)

$» Obs, an arbitrarily complicated function to describe the experimentally
measured configurations of the phase-space — NUMERICAL INTEGRATION

#» Divergent Matrix-Elements — D = 4 — 2¢

#» TASK: Expose 1/¢ poles of individual terms; cancel
them against each other; calculate the finite remainder

numerically (Monte-Carlo integration). I



L essonsfrom NL O

P Amplitudes factorize in terms of UNIVERSAL terms (dipoles) in singular limits
(soft, collinear).

P Use factorization properties to construct finite integrands
o = /dPSn+1 {(I\/Iatrix Elements ), ., — (Born), Dipole}
+/dPSn [/ Dipole (Born) + ( Matrix-elements)n]

P A lot of effort is going into formulating a dipole-like approach at NNLO:

P First partial results for et e~ — 3jets at NNLO,



| Computing without factorization

# A dipole approach at NNLO is aesthetically appealing

#» When completed, it will make use of a deeper
understanding of quantum field theory — physicist
friendly approach.

However:

#® “Dipoles” are not simple to find or integrate

# Mathematical ambition: We must be able to compute
the required phase-space integrals anyway

#» How about a computer-friendly approach? I



I The method.of expansionsin plus-distributions

# Change variables

1 Ph -
o= / dA1dAs . .. ‘ 9(Phase-Space)
0 3(>\1,)\2,...)

® Expand in ¢, using plus distributions, the combination:

(Matrix Elements) (Observ.)

7 = (Jacobian) x (Matrix-Elements)

# Compute terms in the expansion numerically for the
Obs. at hand.

/1d)\ H X Obs. — /1d)\ObS'()‘) — Obs(0)
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| Expanding singular termsin ¢

#® For factorized singularities:

=X "Tf( M1, 02,0 .0)

® substitute
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» At NNLO we find more complicated singularities:
overlapping , pseudothresholds (C.A,

Melnikov, Petriello)

#» They factorize by splitting the integration region:

1 1 x 1 Y
/ dady(z +y) 2T = / dw/ dy(z +y) "7 + / dy/ da(x 4 y) 2t I
0 0 0 0 0



| Applications

Partonic NNLO Monte-Carlos for:
® cte — 2jets,

#» Higgs boson production via gluon fusion,
TEEO
® inthelimit my << 2myop:
| > ~

|
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Total Cross-section

pp » H+X Cross—Section
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» Reproduce the total cross-section,

» Remember the large NLO (70%) and NNLO (30%) corrections, and large scale
variation (~ 15 — 20% at NNLO)

P MC evaluation: 30min for the Tevatron and 90min for the LHC on a 2.4GHz
desktop.

P Relatively smooth numerical integration



Higgs rapidity distribution

NNLO
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® bin-integrated rapidity distribution (MC statistical error 1%)
P Similar scale variations to the total cross-section; large K-factors.

P Small rapidity dependence of the K-factors



Veto on high-Pr |ets

pp » H+X Jet—Vetoed Cross—Section
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» We veto on events with jets p?** > 40GeV

® i, = \/Aqb,?j + Anfj: Two partons form ajetif R;; < R

® |0 and NLO insensitive to the clustering algorithm. NNLO R-variation is 13%



I Rapidity distribution with ajet-veto
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P Cut affects more severely the NNLO than the NLO cross-section.

® NLO: < PH >~ 38GeV

» NNLO: < PH >~ 45GeV I



| Wor k. In progress

» We are studying distributions for the decay of the
Higgs into photons

# Other final states (W*W~, ZZ) in the list “to do”

#» Public code and more results in a forthcoming
publication

#» Fully differential NNLO MC for Drell-Yan lepton-pairs,
pseudoscalar Higgs, etc, require straightforward
Insertions of the appropriate matrix-elemements into

our code I



| Conclusions-Outlook

#» We now have general methods for NNLO
®» inclusive differential distributions

» arbitrarily differential distributions

# Drell-Yan and Higgs boson production are the first
applications

#» \ery important input for high precision studies of basic
observables at the LHC

#» Cleaner extraction of pdfs - precise LHC luminometer

#» New physics searches: Confident comparisons with

precision electroweak data at hadron colliders
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