Diffraction Report II - WG4

Forward protons at LHC

Henri Kowalski DESY 13nd of October 2004 HERA-LHC Workshop

Forward protons at HERA

diffractive *t* – distributions in DIS processes at HERA are connected to basic QCD dynamics BFKL, BK equations

in focus of several theory groups

Impact Parameter Dipole Model

t-dependence of the diffractive cross sections determines the *b* distribution $t = -\vec{\Delta}^2$ $\vec{\Delta}$ - transv. momentum (2-d) \vec{b} - impact parameter (2-d) $\frac{d\sigma_{VM}^{\gamma^* p}}{dt} = \frac{1}{16\pi} \left| \int d^2 \vec{r} \int d^2 b e^{-i\vec{b}\vec{\Delta}} \int_{0}^{1} dz \Psi_{VM}^*(Q^2, z, \vec{r}) \right|^2 \left\{ 1 - \exp(-\frac{\pi^2}{2 \cdot 3} r^2 \alpha_s xg(x, \mu^2) T(b)) \right\} \Psi(Q^2, z, \vec{r}) \left|^2 \right\}$ $\gamma^* \rho \xrightarrow{} J/\Psi \rho$ $Q^2 = 0$ $d\sigma/dt$ (nb/GeV²) 0 2 0 2 I(b) ZEUS 0.05 170 < W < 230 GeV e^+e^- 70 < W < 90 GeVe⁺e⁻ $T_{GY}(b)$ $\mu^{+}\mu^{-}$ 70 < W < 90 GeV $T_{G}(b)$ 0.04 ▲ 30 < W < 50 GeV $\mu^{+}\mu^{-}$ $\frac{d\sigma^{diff}}{dt} \sim \exp(B \cdot t)$ $- IP-S, T_{ov}(b) \\ - IP-S, T_{c}(b)$ 0.03 \Rightarrow $T(b) \sim \exp(-\vec{b}^2/2B)$ 0.02 0.01 10 0 10 2 8 4 6 **b** (**GeV**⁻¹) 1 $T_{c}(b) \propto \exp(-\vec{b}^{2}/2B_{c})$ $B_{c} = 4.25 \text{ GeV}^{2}$ $T_{GY}(b) \propto \int d^2 b' \exp(-(\vec{b} - \vec{b}')^2 / 2w_G) K_0(b' / w_E)$ 1.2 1.6 0.6 0.8 1.4 0.2 0.4 1 t (GeV²)

Forward protons at LHC

$$S^{2} = \frac{\int M^{2}(s,b)e^{-\Omega(s,b)}d^{2}b}{\int M^{2}(s,b)d^{2}b}$$
$$\frac{d\sigma}{dt_{1}dt_{2}}\Big|_{ppM} = \int M^{2}e^{-\Omega(s,b)}e^{i\vec{b}\vec{\Delta}}d^{2}b$$
$$t_{1} = -(\vec{\Delta} - \vec{p}_{1t})^{2} \qquad t_{2} = -(\vec{\Delta} + \vec{p}_{2t})^{2}$$

Khoze Martin Ryskin

TOTEM

Region Coulomb region Pomeron exchange Diffractive structure Large |t| – perturb. QCD $1 \div 10$

 $|\mathbf{t}| [\text{GeV}]^2$ $\leq 5 \times 10^{-4}$ $5 \times 10^{-3} \div 0.1$ $\beta^* = 1540 \text{ m}$ $0.1 \div 1$

Running Scenario [lower s, RP closer to beam] Interference, ρ meas. $5 \times 10^{-4} \div 5 \times 10^{-3}$ [as above], standard $\beta^* = 1540$ m $\beta^* = 1540 \text{ m}, 200 \text{ - } 400 \text{ m}$ $\beta^* = 18 \text{ m}$

Studies of the acceptance in t and ξ , high luminosity, $\beta^*=0.5m$, detectors at 420m from IP

Good acceptance, t -measurement well above 1 GeV² feasible!

A. Sobol

Possibility of modifying the LHC cryostat at about 400m from the IP is studied (UK groups) – can the detector be warm and fit between the beam pipes?

Dedicated expert meeting is planned for November 04 to transfer know-how (of detector calibration and alignment) between HERA and LHC communities

Summary

Measurement of diffractively scattered protons at LHC is challenging but technically possible

Optimization of Forward Detectors is in progress

Measurement of forward protons should allow the determination of survival probabilities for diffractive processes from LHC data alone

⇒Precision QCD study in transverse plane ⇒Diffractive Higgs

Thanks to my co-conveners for help in preparing this talk