Summary of Working Group I Parton Density Functions

Convenors

M. Dittmar (CMS) S. Forte (Milan) A. Glazov (H1) S. Moch (DESY)

- Workshop HERA and the LHC, CERN, Geneva, Oct 13, 2004 -

Plan

Reference LHC processes

- progress on experimental and theoretical accuracy for benchmark processes
- Structure functions
 - PDF error analysis, fit stability and theory improvements
 - F_2 data averaging and PDFs from HERA only
- Resummation
 - ho small x
 - \bullet large x

Plan

Reference LHC processes

- progress on experimental and theoretical accuracy for benchmark processes
- Structure functions
 - PDF error analysis, fit stability and theory improvements
 - F_2 data averaging and PDFs from HERA only
- Resummation
 - small x
 - \bullet large x
- More on LHC reference processes, final states and experimental and theoretical accuracy M. Dittmar

Plan

Reference LHC processes

- progress on experimental and theoretical accuracy for benchmark processes
- Structure functions
 - PDF error analysis, fit stability and theory improvements
 - F_2 data averaging and PDFs from HERA only
- Resummation
 - ho small x
 - \bullet large x
- More on LHC reference processes, final states and experimental and theoretical accuracy M. Dittmar

My comments in red boxes

Technical challenges

Anastasiou

Total cross-sections: Integrations over the phase-space are very similar to loop integrations

$$\delta(p^2 - m^2) \to \frac{1}{p^2 - m^2 + i0} - \frac{1}{p^2 - m^2 - i0}$$

Use loop-methods (very well developed in the last few years)

- Infrared singularities pop easily out by doing "loop-integrations".
- Phase-space integrals for differential distributions require a very different treatment
 - Infrared singularities must be extracted before the integrations
 - Evaluate the finite integrals numerically in order to permit the computation of many different observables

New methods:

analytical: optical theorem turns phase space into loop integrals numerical: iterated sector decomposition

Low energy DY production (E866)

Anastasiou

- NNLO distribution sharper in central rapidity regions.
- **Data lower than NNLO** \rightarrow smaller \bar{q} densities

Fixed order partonic Monte-Carlos

Anastasiou

with Kirill Melnikov and Frank Petriello

A cross-section is:

$$\sigma = \sum_{n} \int d(\mathsf{Phase-Space}_{n}) (\mathsf{Matrix-Elements})_{n}$$
$$\times Observable (\mathsf{PhaseSpace vars})$$

Obs, an arbitrarily complicated function to describe the experimentally measured configurations of the phase-space \rightarrow NUMERICAL INTEGRATION

• Divergent Matrix-Elements $\rightarrow D = 4 - 2\epsilon$

TASK: Expose 1/e poles of individual terms; cancel them against each other; calculate the finite remainder numerically (Monte-Carlo integration).
Important application:
Higgs production via gluon-gluon fusion

Higgs rapidity distribution

Anastasiou

- bin-integrated rapidity distribution (MC statistical error 1%)
- Similar scale variations to the total cross-section; large K-factors.
- Small rapidity dependence of the K-factors

Rapidity distribution with a jet-vet

Anastasiou

Cut affects more severely the NNLO than the NLO cross-section.

 $\label{eq:linear} \begin{array}{l} \mbox{Differential distributions at NNLO in QCD-p} \\ \mbox{Summary of Working Group I-p.7} \end{array}$

Dissertori

W⁺ rapidity distributions

Dissertori

Results : W⁺ production

For increasing acceptance:

Uncertainties vary with	Syst. Uncert. [%]	Y <2	Y <2.5	Y <3
acceptance PDF uncer- tainties to be improved at	PDF	5.28	5.68	6.12
	scale	0.98	1.03	1.05
	Δ_{QED}	0.89	0.88	0.87
	Total	5.44	5.83	6.27
G.	Dissertori	LHC-HERA-	WS, CERN, Oct 2004	

Dissertori

Results : W⁺/W⁻

For increasing acceptance:

Uncertainties cancel largely in	Syst. Uncert. [%]	Y <2	Y <2.5	Y <3
ratios Theory (NNLO): W ⁺ -rapidity Experiment: di-lepton rapidity	PDF	0.652	0.766	0.791
	scale	0.111	0.128	0.161
anopton rapidity	Δ_{QED}	0.013	0.003	0.011
	Total	0.661	0.777	0.808
G. E	Dissertori	LHC-HERA-	WS, CERN, Oct 2004	

Effects of lepton cuts with MC@NLO

Results: W⁺/W⁻ ratios

Not taking any fake rate effects etc. into account

Similar study for $W^+/W^- + 1$ jet with MCFM, sensitive to PDFs

2. Comparison of ZEUS/H1 public analyses

Both ZEUS (2004) and H1 (2003) now make PDF fits to their own data. Where does the information come from in a HERA only fit compared to a global fit ?

		Global	HERA Only			
Mos	Valence tly uv	Predominantly fixed target data (v-Fe and μ D/ μ p)	High Q ² NC/CC e [±] cross sections some dv			
	Sea	Low-x from NC DIS High-x from fixed target Flavour from fixed target	Low-x from NC DIS High-x less precise Flavour ?(need assumptions			
	Gluon	Low-x from HERA dF ₂ /dlnQ ² High-x from momentum sum	Low-x from HERA dF ₂ /dlnQ ² High-x from momentum sum			
		Tevatron jet data?	HERA jet data?			
	 <u>ANALYSES FROM HERA ONLY</u> — Systematics well understood measurements from our own experiments !!! — No complications from heavy target Fe or D corrections 					

ZEUS analysis/ZEUS data

ZEUS analysis/H1 data

10⁻³

 $O^2 = 10 \text{ GeV}^2$

10⁻¹

1 X

H1-ONLY (ZEUS Analysis)

exp. uncert.

H1 PDF 2000

MRST 2001

CTEQ 6M

 10^{-2}

Here we see the effect of differences in the data, recall that the gluon is not directly measured (no jets)

20

15

10

xg

xS

 10^{-4}

The data differences are most notable in the large 96/97 NC samples at low-Q2 The data are NOT incompatible, but seem to 'pull against each other'

IF a fit is done to ZEUS and H1 together the χ^2 for both these data sets rise compared to when they are fitted separately.....

ZEUS analysis/H1 data compared to

H1 analysis/H1 data

Here we see the effect of differences of analysis choice - form of parametrization at Q2_0 etc

Whereas adding H1 to ZEUS data brings no significant improvement for the low/mid-x sea and glue determination, where systematic uncertainties already dominate statistical uncertainties, it does bring improvement to the high-x valence distributions where statistical uncertainties dominate

The ZEUS and H1 high-Q2 data are also more compatible –again need the joint H1/ZEUS data set?

Motivation for the averaging of the data

The mentioned above drawbacks can be significantly reduced by *averaging* of the world structure function data:

- One combined world structure function dataset (or even χ^2 function with complete systematic uncertainties) is <u>much easier to handle</u>. No more mainstream global QCD fits only, hard-core low-x theorist can also become experts in QCD fitting !
- The averaging procedure is unique (will be discussed next), it removes the drawback of the offset method – systematic errors are <u>floated</u> (reduced) in the averaging procedure.
- χ^2/dof of the average allows model independent consistency check between experiments.

HERA structure function data dominant in global PDF fits

Glazov

Average of all published HERA NC/CC data

Input data sets (separate for e^+p and e^-p):

- H1: low Q^2 96-97, NC/CC 94-97, NC/CC 98 NC/CC 00
- Zeus: NC 96-97, CC/NC e^-p 98-99, e^+p 99-00

(Too) Good global $\chi^2/dof = 394/491$

Glazov

Indication of some differences at low Q^2 . New H1 result for low Q^2 will be published soon.

W cross section predictions: CTEQ and MRST studies

NNLO non-singlet QCD analysis of structure function data

• Fully correlated 1σ statistical error bands for xu_v and xd_v at $Q_0^2 = 4.0 \text{ GeV}^2$

- extracted values (solid) Blümlein, Böttcher, Guffanti hep-ph/0407089 with $\alpha_s = 0.1135^{+0.0023}_{-0.0026}(\exp)$
- Comparision with combined singlet/non-singlet fits
 - (dashed) Alekhin hep-ph/0211096 with $\alpha_s = 0.1143 \pm 0.0014 (\exp) \pm 0.0009 (th)$
 - (dashed-dotted) Martin, Roberts, Stirling, Thorne hep-ph/0307262 with $\alpha_s = 0.1153 \pm 0.0020 (\exp) \pm 0.0030 (th)$

Update of NNLO analysis based on DIS data extending to Drell-Yan data

NNLO fit using a code by Anastasiou-Dixon-Melnikov-Petriello

New fit is within the error bands of the previous fit: determination of the errors is not inconsistent

Impact of the DY data on the PDFs

Alekhin

Stirling

QED effects in pdfs

De Rujula, Petronzio, Savoy-Navarro 1979 Krifganz, Perlt 1988 Bluemlein 1990 Spiesberger 1994 Roth, Weinzierl 2004

QED corrections to DIS include:

 \Rightarrow mass singularity when $\gamma \parallel q$

$$rac{lpha}{2\pi} \left< e_q^2 \right> \ \ln\left(rac{Q^2}{m_q^2}
ight) \simeq 0.01$$

for Q=100 GeV, $m_q=10$ MeV, $\langle e_q^2
angle = 5/18.$

included in standard radiative correction packages (HECTOR, HERACE'E'S

QED-improved DGLAP equations

• at leading order in \ddot{A} and \ddot{A}_{s}

$$\begin{split} \frac{\partial q_i(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha_S}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{qq}(y) \; q_i(\frac{x}{y},\mu^2) + P_{qg}(y,\alpha_S) \; g(\frac{x}{y},\mu^2) \Big\} \\ &+ \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ \tilde{P}_{qq}(y) \; e_i^2 q_i(\frac{x}{y},\mu^2) + P_{q\gamma}(y) \; e_i^2 \gamma(\frac{x}{y},\mu^2) \Big\} \\ \frac{\partial g(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha_S}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{gq}(y) \; \sum_j q_j(\frac{x}{y},\mu^2) \\ &+ \; P_{gg}(y) \; g(\frac{x}{y},\mu^2) \Big\} \\ \frac{\partial \gamma(x,\mu^2)}{\partial \log \mu^2} &= \; \frac{\alpha}{2\pi} \int_x^1 \frac{dy}{y} \Big\{ P_{\gamma q}(y) \; \sum_j e_j^2 \; q_j(\frac{x}{y},\mu^2) \\ &+ \; P_{\gamma \gamma}(y) \; \gamma(\frac{x}{y},\mu^2) \Big\} \end{split}$$

• momentum conservation:

$$\int_0^1 dx \ x \left\{ \sum_i q_i(x,\mu^2) + g(x,\mu^2) + \gamma(x,\mu^2) \right\} = 1$$

HERA-LHC Workshop CERN

-1

Stirling

e

first measurement of $\gamma(x,Q^2)$?

10 g 10° 10⁻¹ $\int_{0}^{\infty} \sigma(x) dx = 10^{-2}$ sea quarks **MRST2004** 10^{-3} proton pdfs $\Omega^2 = 20 \text{ GeV}^2$ 10 10^{-2} 10^{-1} 10° Х

ZEUS: "Observation of high E_{T} photons in deep inelastic scattering", hep-ex/0402019

 $\sqrt{s} = 318 \text{ GeV}, Q^2 > 35 \text{ GeV}^2, E_e > 10 \text{ GeV}$ $139.8^{\circ} < \theta_{P} < 171.8^{\circ}$ $5 < E_{\tau}^{\gamma} < 10 \text{ GeV}, -0.7 < \eta^{\gamma} < 0.9$ 0.47 0.72 $\sigma(ep \rightarrow e\gamma X) = 5.64 \pm 0.58 \text{ (stat.)} \pm$ (syst.) pb prediction using MRST2004 QEDpdfs: $\sigma(ep \rightarrow e\gamma X) = 6.2 \pm 1.2 \text{ pb}$ Future: extract γ_p from data scale dependence

HERA-LHC Workshop CERN

a new look at the high-x gluon distribution

- good fit to Tevatron high E_τ jet data requires 'hard' gluon distribution
- MRST use traditional parametrisation $Ax^a(1-x)^n[1+b\sqrt{x+cx}]$, not quite as good a fit as CTEQ; note that $n_g = 2.98$ for the MSbar NLO global fit
- but recall dimensional counting arguments for $x \rightarrow 1$ behaviour of parton distributions

$$q_{\mathsf{val}} \sim (1-x)^3, \quad g(x) \sim (1-x)^5$$

(but in what factorisation scheme, and at what Q² scale?)

Study parametrization bias of PDFs through choice of scheme

- Evolution Equations of DIS Structure Functions do exhibit factorization and renormalization scheme dependencies
- Renormalization scheme dependence is removed only if the perturbative series is summed to all orders
- When considering factorization scheme dependence we have two viable approaches
 - Consider process-independent scheme-dependent evolution equations for PDFs (Standard QCD analysis)
 - Consider process-dependent scheme-independent evolution equations for observables (Scheme Invariant analysis) Possible choices for two

Possible choices for two independent observables for α_s : F_2 , $d/d \ln Q^2 F_2$ F_2 , F_L

Physical observables factorization scheme independent

Guffanti

The goal of our recent work is to use these results to construct a relatively simple, closed form, improved anom. dim. $\Delta(\Delta,N)$ or splitting funct.n P₁(Δ,x)

G.A., R. Ball, S.Forte, hep-ph/ 0306156 (NPB <u>674</u>,459), 0310016

 $P_{I}(\Delta, x)$ should

- reduce to pert. result at large x
- contain BFKL corr's at small x
- include running coupling effects (Airy)
 - be sufficiently simple to be included in fitting codes and of course

Altarelli

Small-*x* resummation

- closely follow the trend of the data
- G. Altarelli

Here are the results for splitting functions $(n_f=0)$

Conclusions

Heavy-quark production at large rapidities

Maltoni

- Various studies for the "detection" of BFKL dynamics have been proposed
- No clear evidence of the need to resum BFKL logs yet
- We have studied various signatures involving heavy quarks at large rapidities
- Can something similar, ie with HF, be done at HERA?

Search for small-x effects in heavy quarks (bottom) final states

Inclusive structure functions

x = 0.8: 20%; x = 0.9: 60%

Summary of the Summary

- Strong participation, new ideas
- Study precision for reference processes
- Quantify impact of HERA PDFs
- Investigate kinematical limits, resum where required

Summary of the Summary

- Strong participation, new ideas
- Study precision for reference processes
- Quantify impact of HERA PDFs
- Investigate kinematical limits, resum where required

On track to meet the workshop goals

- Subgroups established
- Preparation for proceedings under way

Summary of the Summary

- Strong participation, new ideas
- Study precision for reference processes
- Quantify impact of HERA PDFs
- Investigate kinematical limits, resum where required

On track to meet the workshop goals

- Subgroups established
- Preparation for proceedings under way

Thanks all participants of WG1