

UNIVERSITY of GLASGOW

Describing the underlying event at the LHC with JIMMY4.1

Arthur M. Moraes

University of Glasgow PPE - ATLAS

CERN, 11th – 13th October 2004

Outline:

- Underlying event in jet analysis.
- JIMMY4.1 tunings for the underlying event.
- PYTHIA6.214 vs. JIMMY4.1
- PHOJET1.12 vs. JIMMY4.1
- LHC predictions.
- Energy dependence: how does the event activity rise?
- Comments and conclusions.

Underlying event in charged jet evolution (CDF style analysis)

- It is not only minimum bias event!
- The underlying event is everything except the two outgoing hard scattered jets.

In a hard scattering process, the underlying event has a hard component (initial + finalstate radiation and particles from the outgoing hard scattered partons) and a soft component (beam-beam remnants).

JIMMY model for the UE

(http://jetweb.hep.ucl.ac.uk/JIMMY/index.html)

• **Physics model: Eikonal hard scattering model** (see Jon Butterworth's talk on the 22nd June 2004 – "ATLAS Tutorial on MC Event Generators");

- Parton scatterings are correlated via "b" dependence of matter overlap;
- •JIMMY underlying event options:
 - -JMUEO=0 (QCD $2 \rightarrow 2$ with pT>PTMIN);
 - –JUMEO=1, 2 ("small" cross-section scattering pT>PTMIN secondary scatterings with pT>PTJIM);
- JMRAD(73) parameter associated to the proton radius (derived from EM form factor).
- HERWIG's old SUE model (based on UA5 parameterization) will not be used!

IPROC=10000+chosen process

A. M. Moraes

Describing the UE at the LHC

A. M. Moraes

Describing the UE at the LHC

Comments	PYTHIA6.2 -	ATLAS – TDR	CDF – Tune A	PYTHIA6.214 -	
	Default	(PYTHIA5.7)	(PYTHIA6.206)	Tuned	
Generated processes (QCD + low-pT)	Non-diffractive inelastic (MSEL=1) (MSEL=1)		Non-diffractive inelastic + double diffraction (MSEL=0, ISUB 94 and 95)	Non-diffractive + double diffraction (MSEL=0, ISUB 94 and 95)	
p.d.f.	CTEQ 5L	CTEQ 2L	CTEQ 5L	CTEQ 5L	
	(MSTP(51)=7)	(MSTP(51)=9)	(MSTP(51)=7)	(MSTP(51)=7)	
Multiple interactions	MSTP(81) = 1	MSTP(81) = 1	MSTP(81) = 1	MSTP(81) = 1	
	MSTP(82) = 1	MSTP	MSTP(82) = 4	MSTP(82) = 4	
pT min	mode MSTP(82) = 1 MSTP(82) = 4 pT min PYTHIA Tunings. See last March's talk on Models for MODE Min-bias and the UE! Of the hadron				
Core		AS and the OE!	of the hadron radius RP(84) = 0.4)	50% of the hadron radius (PARP(84) = 0.5)	
Gluon production	PARP(85) = 0.33	PARP(85) = 0.33	PARP(85) = 0.9	PARP(85) = 0.33	
mechanism	PARP(86) = 0.66	PARP(86) = 0.66	PARP(86) = 0.95	PARP(86) = 0.66	
$\boldsymbol{\alpha}_{s}$ and K-factors	MSTP(2) = 1	MSTP(2) = 2	MSTP(2) = 1	MSTP(2) = 1	
	MSTP(33) = 0	MSTP(33) = 3	MSTP(33) = 0	MSTP(33) = 0	
Regulating initial state radiation	PARP(67) = 1	PARP(67) = 4	PARP(67) = 4	PARP(67) = 1	

A. M. Moraes

χ^2 **comparison** (not the minimum χ^2 !):

		χ2 _{< Nchg >} / 50 d.o.f	χ2 _{< Pt sum>} / 50 d.o.f	χ2 _{UE} / 100 d.o.f
PYTHIA 6.214	ATLAS Tuning	1.29	2.84	2.07
	CDF Tuning	1.04	1.57	1.31
	ATLAS – TDR	20.56	9.49	15.03
	PYTHIA6.214 – Default	15.68	29.68	22.68

	PHOJET1.12	5.27	9.41	7.35		
JIMMY 4.1	Tuning A	2.15	2.07	2.11		
	Tuning B	2.33	4.51	3.42		
	JIMMY4.1 - Default	36.61	47.36	41.99		

• JIMMY4.1 tunings (both A and B) describe well the UE data!

A. M. Moraes

LHC predictions: JIMMY4.1 Tuning A vs. Tuning B

A. M. Moraes

LHC predictions: JIMMY4.1 Tunings A and B vs. PYTHIA6.214 – ATLAS Tuning

LHC predictions: JIMMY4.1 Tunings A and B vs. PYTHIA6.214 – CDF Tuning

LHC predictions: JIMMY4.1 Tunings A and B vs. PHOJET1.12

A. M. Moraes

Describing the UE at the LHC

Predictions for the UE: from Tevatron to LHC energies

	JIMMY4.1		PYTHIA6.214						
	Measurement	Tuning A	Tuning B	ATLAS Tuning	CDF Tuning	PH	OJET1.12	Data	
L	<n<sub>chg></n<sub>	2.4	2.3	2.4	2.3		2.1	2.3	
tro	pT _{ljet} > 10 GeV								
eva	<pt<sub>sum></pt<sub>	2.5	2.1	2.3	2.6		2.0	2.6	
F	pT _{ljet} > 10 GeV								
tc	<n<sub>chg></n<sub>	12.2	9.2	6.6	4.7		3.0	"?"	
	pT _{ljet} > 10 GeV								
	<pt<sub>sum></pt<sub>	11.5	8.5	7.5	6.5		3.5	"?"	
	pT _{ljet} > 10 GeV								
x 5 x 4 x 3 x 2 x 1.5 x "?"									
LHC									
A. M. Moraes			Describir	Jescribing the UE at the LHC			CERN, 11 th October 200		

Event Activity Energy Dependence: what does JIMMY4.1 predict?

A. M. Moraes

Describing the UE at the LHC

e...e

Conclusions:

• The underlying event data for $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV can be described by JIMMY4.1 with appropriate tunings. (χ^2 comparisons result in similar values obtained by the best tunings!)

• There are sizeable uncertainties in LHC/UE predictions generated by different models.

• Charged particle density (central) in non-diffractive inelastic events shows good agreement between JIMMY4.1 (Tunings A and B) and PYTHIA – ATLAS for 100 GeV < \sqrt{s} < 2 TeV. However, as \sqrt{s} increases, JIMMY distributions rise very steeply!

• We need to understand better how to tune the energy dependence of the event activity: multiple parton scattering rate? Any ideas on how we can make good use of HERA data?

Updated results: www.cern.ch/amoraes

A. M. Moraes