

Heavy neutral gauge bosons at the LHC

Anne-Sylvie Giolo-Nicollerat, ETHZ

LHC days 2004

Split, october 8th 2004

Outline

- Models predicting new gauge bosons
- Searches for Z' at Tevatron and LEP
- CMS Z' discovery potential
- Observables to identify a Z' and expectations for 100fb⁻¹ cross section, width, forward backward charge asymmetry, rapidity

The Standard Model

The SM gauge group:

 $SU(3)_c \times SU(2)_L \times U(1)_Y \xrightarrow{SSB} SU(3)_c \times U(1)_{em}$

predicts 3 gauge couplings and 8 + 3 + 1 gauge bosons with $\sin^2 \theta_W$: free parameter

Why this structure ? Is it possible to embed the SM gauge group in a unique group ? (Glashow, Georgi; Pati, Salam; Fritsch, Minkowski)

$G_{SM} \subset SU(5) \subset SO(10) \subset E_6???$

Extending the SM gauge group: new gauge bosons Concentrate here on Z'

- Effective Rank-5 models, parameter: $\beta \qquad Z' = Z'_{\chi} \cos \beta + Z'_{\psi} \sin \beta$ $E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \rightarrow SM \times U(1)_{\theta_{E_6}}$ Models studied: $Z'_{\psi}, Z'_{\chi}, Z'_{\eta}, Z'_{d}$
- Left-Right symmetric models: parameter: $\alpha_{LR} \equiv \sqrt{\frac{c_W^2 g_R^2}{s_W^2 g_L^2}} 1$

 $SO(10) \rightarrow SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Models studied: Z'_{LR}

• Sequential Standard Model:

take the SM Z couplings $\rightarrow Z'_{SM}$

(Not gauge invariant but good for comparisons)

Z': already done, a few references

• Z', theoretical point of view

Robinett, Rosner, Prospects for a second neutral vector boson at low mass in SO(10), Phys. Rev. D25 (1982) 3036

Del Aguila, Langacker, Cvetič, *Determination of Z' couplings to quarks and leptons at future hadron colliders*, hep-ph/9303299, Phys.Rev.D48

Cvetič, Godfrey, *Discovery and identification of extra gauge bosons*, hep-ph/9504216

Djouadi, Leike, Riemann, Schaile, Verzegnassi, *Signals of new gauge bosons at future* e^+e^- *colliders*, Z.Phys.C56:289-300,1992

• Forward-backward charge asymmetry

Barger, Deshpande, Rosner, Whisnant, *Production, decay and forward-backward asymmetries of extra gauge bosons in* E_6 Phys. Rev. D35 (1987)

Dittmar, Neutral current interference in the TeV region; the experimental sensitivity at the LHC, hep-ex/9606002, Phys.Rev.D55

 \rightarrow Combine all this, update for the LHC, concentrate on the Z' identifiaction

Z' experimental searches

Z' at Tevatron Run II (direct search for a mass peak)

CDF: $M_{Z'} > 545 - 730$ GeV, 126pb⁻¹ DØ: $M_{Z'_{SM}} > 610$ GeV, 100pb⁻¹

hope to push the limits to $M_{Z'} > 800$ -

900 GeV with 2 fb⁻¹ (CDF TDR)

+ small mixing angle between Z and Z'

[[]hep-ex/0312023]

Z' at LHC/CMS for Z' leptonic decays

Look in dilepton invariant mass

CMS discovery potential for $Z' \rightarrow \mu \mu$: 5 TeV

[Cousins et al., CMS Analysis Note 2004/002]

Next step: How to **identify** a Z'?

Observables to identify a Z' at the LHC

Fit the mass peak !

- Width: Non relativistic Breit-Wigner fit
- Cross section: Events within 3Γ

Use $\sigma_{\ell\ell} \cdot \Gamma$

(independent of Z' exotic decays)

• Lepton forward-backward charge asymmetry $\cos \theta$ (quark-lepton) distribution in the Z' rest frame:

$$\frac{d\sigma}{d\cos\theta^*} \propto \frac{3}{8}(1+\cos^2\theta^*) + A_{FB}^{\ell}\cos\theta^*$$

 \Rightarrow Unbinned maximum likelihood fit

LHC: quark direction not known $\Rightarrow Z'$ boost \approx initial quark direction

October 8th, 2004

Asymmetry in symmetric collisions ?

Lepton forward-backward asymmetry (on-peak AND off-peak)

 \Rightarrow Require $|Y_{\ell\ell}| > 0.8 \ (\varepsilon_{cut} \approx 40\%)$

• Z' rapidity distribution: constrain Z' couplings to u and d

Shape of the different quark fractions

 $Y_{Z'}$ depends on Z' couplings to u and d

 \Rightarrow Get $Y_{Z'_{u\bar{u}}}$, $Y_{Z'_{d\bar{d}}}$, $Y_{Z'_{sea}}$ \Rightarrow Fit $Y_{\ell\ell}$ in a given Z' model \rightarrow relative $u\bar{u}$, $d\bar{d}$ and sea fractions

Standard fast simulation

(easy signature, expect only small efficiency reduction for a real detector)

PYTHIA, $pp \rightarrow (Z, \gamma, Z') \rightarrow ee, \mu\mu$ \sqrt{s} : 14TeV, pp collisions

Reconstructing the events

- \rightarrow CMS/ATLAS $e^{\pm}\text{,}~\mu^{\pm}$ acceptance
 - Two isolated leptons with opposite charge
 - $p_t^{min}(\ell) > 20 \text{ GeV}$
 - $|\eta|(\ell) < 2.5$
 - Coplanar lepton pairs: $|\phi| > 160^{\circ} (\sum p_t \approx 0)$

Discriminating the models

Rapidity distribution

 \Rightarrow Combine these observables !

Observables vs. model parameters

October 8th, 2004

Summary

LHC potential for Z' study:

Discovery: up to 5 TeV

Identification: up to 2-2.5 TeV with 100 fb^{-1}

Results of this study published in Phys.Lett.B583:111-120,2004, hep-ph/0307020 coauthors: M. Dittmar, A. Djouadi

Backup slides

The 4 observables for a 1.5 TeV Z^\prime for $\mathcal{L}=100 \text{fb}^{-1}$

Model	$\sigma_{\ell\ell}^{3\Gamma} \times \Gamma \text{ [fb·GeV]}$			$A_{FB}^{on-peak}$			$A_{FB}^{off-peak}$			$R_{u\overline{u}}$		
Z'_ψ	487	±	5	0.04	±	0.03	0.53	±	0.04	0.60	±	0.07
Z'_{η}	630	±	20	-0.03	±	0.03	0.45	\pm	0.04	0.71	±	0.07
Z'_d	1520	±	40	-0.50	\pm	0.02	0.26	\pm	0.05	0.00	\pm	0.01
Z'_{χ}	2050	±	40	-0.23	±	0.02	0.26	±	0.05	0.22	±	0.05
Z'_{LR}	3630	<u>+</u>	80	0.15	<u>+</u>	0.02	0.06	\pm	0.06	0.45	<u>+</u>	0.05
Z'_{SM}	8000	±	140	0.07	±	0.02	0.18	±	0.03	0.05	±	0.04

Potential accuracies for 100 fb^{-1}

- $\Delta \sigma_{\ell\ell}^{3\Gamma} \cdot \Gamma / \sigma_{\ell\ell}^{3\Gamma} \cdot \Gamma$ ~ 0.1 - 0.3% (stat.) \oplus 1% ??(syst.) ($M_{Z'}$ = 1.5 TeV) ~ 8 - 10% (stat.) \oplus 1% ??(syst.) ($M_{Z'}$ = 2.5 TeV)
- ΔA_{FB}^{onpeak}
 - $\sim 0.02 0.03$ (stat.) ($M_{Z'} = 1.5$ TeV)
 - $\sim 0.07 0.1 \, ({
 m stat.}) \, (M_{Z'} = 2.5 \, \, {
 m TeV})$
- $\Delta A_{FB}^{interference}$
 - $\sim 0.04 0.06 \,(\text{stat.}) \,(M_{Z'} = 1.5 \,\,\text{TeV})$
 - $\sim 0.1 0.2 \, ({
 m stat.}) \, \, (M_{Z'} = 2.5 \, \, {
 m TeV})$
- $\Delta R_{u\bar{u}}$

$$\sim 5 - 8\%$$
 (stat.) ($M_{Z'} = 1.5$ TeV)
 $\sim 10 - 30\%$ (stat.) ($M_{Z'} = 2.5$ TeV)