Review of Tevatron Results

Ivan K. Furić University Of Chicago

Overview

The Tevatron Collider

• $p\bar{p}$ collider, \sqrt{s} = 1.96 TeV, collisions every 396 ns

- major upgrades: main injector, recycler
- two multi-purpose detectors: CDF & DO

Tevatron Performance

- **p** recycler is now working
- Peak luminosity
 - ×2 increase since 2003
 - reached $\mathcal{L}=10^{32}$ cm⁻²s⁻¹
- Future Plans:
 - run until 2009
 - deliver 4-9 fb⁻¹

Tevatron Detectors

CDF

- excellent p resolution
- more silicon layers (7 vs 4)
- L1 trigger accept ~20 kHz
- displaced track trigger (SVT)

I.K. Furic, Review of Tevatron Results, LHC Days in Split 2004

excellent coverage for µ and SI systems (|n| < ~2 vs. ~3)
excellent calorimeter

Detector Operations

CDF COT gain problems fixed by adding oxygen

DO calorimeter problems traced to grounding problem

QCD Physics

Inclusive Jet Cross Section

CDF Run II Preliminary

- test perturbative QCD over 9 orders of magnitude
- measurement extended to higher E_T by ~ 200 GeV
- systematic unc. dominated by jet energy scale (~3%) will improve (~ 1% in Run I)

Dijet Cross Section

- dijet mass has greater sensitivity to new phenomena
- agreement with theory within experimental error
- same source of dominant systematic

Heavy Flavor Production

Playesignes crass section massurements

- large samples precision measurements
 - · lifetimes masses, BRS, CB Oiking
- B_s , Λ_b , B_c currently exclusive to Tevatron!

B Meson Lifetimes

- lifetime ratios predicted by HQET
- average $p_T(B) \sim 10 \text{ GeV/c}$
- results competitive with best single measurements
- systematics at ~1% level

 $CDF = \frac{1}{2} \left\{ \begin{array}{l} r(B^{+})/r(B^{0}) = 1.093 \pm 0.021 \pm 0.022 \\ r(B^{0}) = 1.397 \pm 0.107 \\ r(B^{0}) = 1.221 \pm 0.217 \\ r(A_{b}) = 1.221 \pm 0.217 \\ r(A_{b}) = 1.221 \pm 0.033 \pm 0.043 \ ps \\ r(B^{+}) = 1.662 \pm 0.033 \pm 0.008 \ ps \\ r(B^{0}) = 1.539 \pm 0.051 \pm 0.008 \ ps \\ r(B_{s}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.100 \pm 0.008 \ ps \\ r(B^{0}) = 1.369 \pm 0.008$

B_s Mixing Sensitivity

- ~ 25 times faster than BO mixing → ct resolution matters!
- analysis samples:
 - semi-leptonic (D_s+e,μ) : $\sigma(p_B)$ ~15%
 - fully hadronic ($D_s\pi,3\pi$): $\sigma(p_B)\sim0.1\%$ crucial for high ms
- effective tagging power $\varepsilon D^2 \sim 2\%$
- with data in hand, 95% CL sens: 15 ps⁻¹

14

Width Difference in $B_s \rightarrow J/\psi\phi$

- another way to probe B_s eigenstates: $\Delta\Gamma_s/\Delta m_s = 3.7 \pm 0.8 \times 10^{-3}$
- angular information separates heavy from light component
- fit heavy and light lifetimes separately
- $B^0 \rightarrow J/\psi K^{*0}$ agrees with B factories

L-200 pb⁻¹ <u>Y</u>² Prob: 13.6 %

COF Run II Preliminary

- prediction: $\Delta \Gamma_s / \Gamma_s = 0.12$
- CDF measured: $\Delta \Gamma_s / \Gamma_s = 0.71 \pm 0.24 \pm 0.01$
- implies $\Delta m_s = 129 \pm \frac{69}{55} \text{ ps}^{-1}$
- p(ΔΓ/Γ=0) < 1/718, p(ΔΓ/Γ=0.12) < 1/204
- D0 result coming soon

The X(3872)

- August 2003: Belle announces the X(3872) discovery
- Tevatron confirms within one month
- prompt fraction same as $\Psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- analysis of $\pi^+\pi^-$ invariant mass spectrum in progress
 - possibly $J/\psi \rho$?

Rare Decays: B_s , B^0 , $D^0 \rightarrow \mu\mu$

muons are hard to fake (fake rate ~1%)

	Decay	95% CL	SM Exp
DO	B _s → μμ	5.8 × 10 ⁻⁷	
CDF	B _s → μμ	7.5 × 10 ⁻⁷	~10 ⁻⁹
	B₀ → µµ	1.91 × 10 ⁻⁷	
	D₀ → µµ	3.3 × 10 ⁻⁶	~10 ⁻¹³

(Re)Discovery of the B_c

- search for $B_c \rightarrow J/\psi \mu \nu$ decays
- D0 (210 pb⁻¹) combined fit to mass and lifetime:
- events per 0.2 GeV data 30 heavy flavor background 25 prompt background 20 signal • Event count: 15 231 total candidates 10 5 95±12±11 signal 4.5 3.5 5 5.5 6.5 7.5• Mass: ψµ invariant mass (GeV) m=5.95±0.14±0.34 GeV/c² ifetime: τ =0.448± $^{0.123}_{0.063}$ ±0.121 ps D0 Preliminary 40 • Lifetime: 30 $\tau = 0.448 \pm 0.123 \pm 0.121 \text{ ps}$ 20 10 0 ψµ pseudo-proper time (ps)
- first B_c search with > 5 σ signal significance

W massing widts with Vector cross section measurements test SM predictions WW production important background for Higgs

W Mass Measurement

- reconstruct W→Iv transverse mass: $M_{\tau} = \sqrt{2E_{\tau}^{\ell}E_{\tau}^{\nu}(1-\cos\phi_{\ell\nu})}$
- fit distribution to extract mass and width
- statistical uncertainty ~ 35 MeV/c²
- Systematic uncertainty:
 - dominated by lepton E scale, work in progress
- D0 width measurement: 2.011±0.093±0.107 GeV/c² (177 pb⁻¹)

WW, WZ, ZZ Production

I.K. Furic, Review of Tevatron Results, LHC Days in Split 2004

Wy, Zy Production

- pop quark discovered in Run I
 Run II: precision measurements of top properties
- bare quark (decays too fast to hadronize)
- very massive: $m \sim 175 \text{ GeV}/c^2$

The top quark

- Precision measurements of top properties:
 - top production cross section
 - top mass

6666666

- top spin: W helicity in top decays
- cross sections in different final states
- Top pair production via strong interaction

 \overline{q} \overline{t}
 \overline{g} \overline{t}

 85% qq, 15% gg at Tevatron,
 10% qq, 90% gg at LHC

 ~1 event/hour at recent lum
 ~1 event/sec at low lum

Top quark final states

- signal has \geq 2 jets in final state
- tag b jets using:
 - displaced vertex (~ 3 mm)
 - soft lepton from b decay
- understand shapes of
 W/Z+n jet backgrounds (multiplicity, kinematics)

Top pair cross sections

I.K. Furic, Review of Tevatron Results, LHC Days in Split 2004

many different measurements ~20% precision - statistics limited

26

W helicity in $t \rightarrow Wb$ decays

SM is V-A theory: predicts W's from top decays are $F_0 = 70\%$ longitudinal, $F_- = 30\%$ left-handed

- assume $F_{+}=0.0$ (ie no V+A) assume $F_{0}=70\%$
- measure $F_0 = 0.89 \pm 0.30 \pm 0.17$ limit on V+A fraction F_0 > 0.25 at 95% C.L.
- F₊ < 0.269 at 90% C.L.

- Data

Tttbar (V-A)

W+iets

QCD

0.4

0.6

0.8

cosθ

-ttbar (V+A)

Measuring the top quark mass

- important SM parameter
- indirect Higgs mass constraint
- complicated event topology
- many fitting techniques with different sensitivities
- goal $\delta m_{top} \sim 2-3 \ GeV/c^2$

Single top production

W

- Probe EW coupling, direct determination of V_{tb}
- Sensitive to new physics

q

 \overline{q}

W

- s-channel: new charged gauge boson
 - t-channel: anomalous couplings, FCNC

Channel	CDF, 95% C.L.	D0, 95% C.L
s-channel	< 13.6 pb	< 19 pb
t-channel	< 10.1 pb	< 25 pb
Combined	< 17.8 pb	< 23 pb

g

10000000000

I.K. Furic, Review of Tevatron Results, LHC Days in Split 2004

 \overline{b}

Higgs, SUSY and Other Searches

Standard Model Higgs Search

- $m(H) < 130 \ GeV/c^2$: Associated production: $W,Z + H(\rightarrow bb)$
- m(H) > 130 GeV/c²: H \rightarrow WW

Improvements from better b tagging, topological (spin 0) information, more channels (ZH), mass resolution ($Z \rightarrow bb$ sample)

Standard Model Higgs Limits

- SM: Limits already exceeding Run I results
- Sensitivity beyond LEP exclusion starts at ~2 fb⁻¹.
- New Physics: Interesting sensitivity to other new physics sooner?

Massive, long-lived objects

- Stop quark
 - Use new Run II Time oF Flight capability (v << c)
 - ToF resolution ~110 ps
 - Mstop > 97 107 GeV @ 95% CL using 53 pb-1 (LEP limit 95 GeV)
- Magnetic monopoles
 - highly ionizing (500 mips)
 - straight track in $r-\phi$
 - curved in r-z plane
 - dedicated ToF-based trigger
 - dE/dX in drift chamber
 - m(monopole) > 350 GeV/c² at 95% C.L. using 25 pb⁻¹

Conclusions

- Tevatron luminosity ramped up, 10^{32} cm⁻²s⁻¹ reached
- Detectors
 - Both CDF and DO detectors are performing well.
 - Triggers & DAQ still improving
- Data analysis
 - currently analyzing ~400 pb⁻¹ per experiment
 - producing good physics results
 - understanding detectors and backgrounds
 - developing and optimizing physics algorithms
 - much better measurements will come soon.
- Discoveries
 - For the Tevatron to progress significantly beyond LEP new physics limits, we need 2-5 fb per experiment.

Backup Slides

Inclusive Jet Cross Section vs y

- \bullet y-dependent σ constrains gluon at medium to high x
- dominant systematic again jet energy scale

W Charge Asymmetry

- On average, pu > pd in proton:
 W+ (W-) boosted along proton (anti-proton) beam direction
- Asymmetry between N(W+) and N(W-) versus η or Asymmetry between N(e+) and N(e-) versus η
- Sensitive to u/d quark momentum ratio at large x
- Constrain PDFs at large x

SUSY Searches

- Squark-gluino search
 - 2 jets +missing E_T
 - For MSUGRA @ m₀=25GeV, tanb=3, A₀=0, m<0, exclude m(squark/gluino) < 292/333 GeV
 - Improves Run I limits
- Chargino-neutralino search
 - Using trileptons
 - One of the golden discovery modes at Tevatron and LHC
 - Analysis of data already on tape will extend sensitivity beyond LEP2

SM Prediction of W mass

Radiative corrections make W mass sensitive to top and Higgs mass

MSSM Higgs Search

at high $tan\beta$: enhanced x-sections, heavy flavor (b, t) preferred

Unexpected top quark decays?

- assuming three-generation CKM matrix unitarity, $|V_{tb}| \sim 1$ R = BR(t \rightarrow Wb)/BR(t \rightarrow Wq) \sim 1.0
- measure b quark content of top decay products

 $BR(t \rightarrow Wb)/BR(t \rightarrow Wq) > 0.6 \text{ at } 95\% C.L. (CDF)$

• does top decay into something besides SM t \rightarrow Wb? t \rightarrow Xb, where X \rightarrow qq (100%)? t \rightarrow Yb, where Y \rightarrow Iv (100%)?

• estimate limits using ratio of top cross sections $\sigma(II)/\sigma(Ij)$

CDF: Br(t \rightarrow Xb)<0.46 at 95% C.L. Br(t \rightarrow Yb)<0.47 at 95% C.L.

Higgs $\rightarrow \gamma \gamma$ (non-SM Light Higgs)

DØ Run II Preliminary

I.K. Furic, Review of Tevatron Results, LHC Days in Split 2004

Doubly Charged Higgs Search

- Predicted by Left-Right Symmetric Model
- (motivated by neutrino mass), light in SUSY-LR

- Surpass LEP limits for coupling to leptons < 0.02
 - Possibly long-lived due to limited decay modes
- Highly ionizing
- $M(H_{\pm\pm})$ > 134 GeV/c² at 95% CL (LEP limit ~ 98 GeV/c²)