HERA results and implications for LHC physics

on behalf of the H1 and ZEUS collaborations

H. Jung, DESY, FRG

LHC days in Split, Croatia, 5-9 Oct 2004

- Parton Density Functions
 Inclusive cross section and structure function: F_2 and the gluon
- Parton radiation Jet production - from central to forward (proton) direction
- Diffraction factorization and breaking
- HERA and the LHC
- Conclusion

on behalf of the H1 and ZEUS collaborations

H. Jung, DESY, FRG

LHC days in Split, Croatia, 5-9 Oct 2004

- Parton Density Functions
 Inclusive cross section and structure function: F_2 and the gluon
- Parton radiation Jet production - from central to forward (proton) direction
- Diffraction factorization and breaking
- HERA and the LHC
- Conclusion

on behalf of the H1 and ZEUS collaborations

H. Jung, DESY, FRG

LHC days in Split, Croatia, 5-9 Oct 2004

- Parton Density Functions needed for any cross section at LHC Inclusive cross section and structure function: F₂ and the gluon
- Parton radiation Jet production - from central to forward (proton) direction
- Diffraction factorization and breaking
- HERA and the LHC
- Conclusion

on behalf of the H1 and ZEUS collaborations

H. Jung, DESY, FRG

LHC days in Split, Croatia, 5-9 Oct 2004

- Parton Density Functions needed for any cross section at LHC Inclusive cross section and structure function: F₂ and the gluon
- Parton radiation important also for Higgs production at LHC Jet production - from central to forward (proton) direction
- Diffraction factorization and breaking
- HERA and the LHC
- Conclusion

on behalf of the H1 and ZEUS collaborations

H. Jung, DESY, FRG

LHC days in Split, Croatia, 5-9 Oct 2004

- Parton Density Functions needed for any cross section at LHC Inclusive cross section and structure function: F₂ and the gluon
- Parton radiation important also for Higgs production at LHC Jet production - from central to forward (proton) direction
- Diffraction diffractive Higgs at LHC factorization and breaking link to multiple scatterings at LHC
- HERA and the LHC
- Conclusion

The HERA collider and experiments

The HERA collider and experiments

The HERA collider and experiments

HERA $E_e=27.6~{ m GeV}$ $E_p=920~{ m GeV}$ $\sqrt{s} = 319 \text{ GeV}$ $\bullet E = 54 \text{ TeV}$ fixed target H. Jung, HERA res

The general hard process in ep

 \bullet test theory over large range in Q^2

The structure function $F_2(x,Q^2)$

HERA F₂

 $F_{2}(x,Q^{2}) = \sum_{i} e_{i}^{2} x q_{i}(x,Q^{2})_{e}$ $x = \frac{Q^2}{W^2 + O^2}$ Precision measurements now: $\sim 1-2$ % stat, ~ 2 % sys. Scaling violations perfectly described with NLO DGLAP: $0.63 \cdot 10^{-5} < x < 0.65$ $1 < Q^2 < 30000 \text{ GeV}^2$ • adjust input pdf to fit F_2 data lacksim extract pdf's from F_2 fit **Similar** pdf sets by MRST, CTEQ etc use pdfs to predict xsect. even at $p\bar{p}$ **BUT** what about the gluon ??? direct measurement with F_L ???

NLO analysis of F_2 (ZEUS)

NLO DGLAP fit to F_2 2.5 < Q^2 < 30000 GeV² 6.3 10⁻⁵ < x < 0.65 pdf extracted...

- Iarge uncertainty of gluon at $x \stackrel{>}{\sim} 0.1$
- Iarge uncertainty of gluon at small Q^2 and small x
- DGLAP not applicable for $Q^2 < 1 2 \text{ GeV } ???$
- constrain gluon at large x with jet data
- what about small x ?

Improve F_2 fits with Jets (ZEUS)

ZEUS

use DIS jets to constrain fits

use γp (only direct) jets also !!!

Parton Density Functions from F_2 and Jets

• gluon improved at large x

NLO DGLAP fit to F₂ and Jets
pdfs agree within uncertainty

further improvement on gluon - F_L

Heavy Quark Structure Functions F_2^c and F_2^b

use silicon tracker for life-time info large $Q^2 rac{1}{2}$ small extrapolations H1 PRELIMINARY ^{- 3}с Н $O^2 = 200 \text{ GeV}^2$ $O^2 = 650 \text{ GeV}^2$ 0.5 • H1 Preliminary • H1 Preliminary • ZEUS • ZEUS 0.4 - H1 PDF 2000 - H1 PDF 2000 0.3 0.2 0.1 0 $10^{-\overline{3}}$ -2 10 ⁻¹ 10^{-1} -2 10 1 10 1 Х Х H1 PRELIMINARY $F_2^{b\bar{b}}$ 0.06 $Q^2 = 200 \text{ GeV}^2$ $O^2 = 650 \text{ GeV}^2$ 0.05 • H1 Preliminary • H1 Preliminary - H1 PDF 2000 - H1 PDF 2000 0.04 0.03 0.02 0.01 0 10-3 10^{-1} 10 -2 10^{-1} -2 10 1 1 Х Х NLO DGLAP fit to $F_2^{c,b}$

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Groatia, 5-9 Oct 2004 - p.8

Structure Functions at HERA

Structure Functions at HERA are well described by NLO - DGLAP

Structure Functions at HERA

Structure Functions at HERA are well described by NLO - DGLAP is that all we can learn ???

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 - p.9

Structure Functions at HERA

Structure Functions at HERA are well described by NLO - DGLAP **HERA and QCD** is more !!!

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 - p.9

The challenge is Hadronic Final State !

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 – p.10

The challenge is Hadronic Final State !

The challenge is Hadronic Final State !

Where is the problem ? Hadronic Final State !

Where is the problem ? Hadronic Final State !

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 - p.11

Di - jets at small x in DIS

Di - jets in DIS: one of the problems !

- Measurement of $\frac{d\sigma}{d\Delta\Phi}$ exp. difficult
- Measure:

$$S(x,Q^2,\Delta\Phi)=rac{\int_0^{120^{
m o}}d\sigma d\Phi}{\int_0^{180^{
m o}}d\sigma d\Phi}$$

- sensitive to finite k_t ...
- un-integrated gluon density !?!

Data higher than NLO - 2jet (3jet) new dynamics ??? beyond DGLAP **??**

Forward jets: going beyond DGLAP ?

Mueller - Navelet jets in DIS: Jet (π^0) in p - direction with $p_t^2 \sim Q^2$, x_{jet} large, BUT small x_{bj} rightarrow suppress DGLAP (Q^2) evolution, allow evolution in x (BFKL)

Parton dynamics at small x: Forward Jets

Parton radiation at small x

- describe multiparton emissions only in approximations
- put everything beyond $\mathcal{O}(\alpha_s^2)$ into

QCD evolution equations approximation of higher orders

Parton radiation at small \boldsymbol{x}

- describe multiparton emissions only in approximations
- put everything beyond $\mathcal{O}(\alpha_s^2)$ into

QCD evolution equations approximation of higher orders

Parton dynamics at small x: Forward Jets

ZEUS

20 GeV² <
$$Q^2$$
 < 100 GeV²
forward jet (incl. k_t algorithm)
 $E_t > 5$ GeV
 $2 < \eta_{jet} < 3.5$
 $x_{jet} > 0.036$
 $0.5 < \frac{p_t^2_{jet}}{Q^2} < 2$

- approaches with different radiation pattern: better !
- CCFM/BFKL close to data

- forward jets: \sim 20 % of jet production
- forward jets probe QCD radiation along the parton ladder
- is there more than NLO calcs and DGLAP evolution ?
- understand QCD radiation pattern !

- forward jets: \sim 20 % of jet production
- forward jets probe QCD radiation along the parton ladder
- is there more than NLO calcs and DGLAP evolution ?
- understand QCD radiation pattern !
 - diffractive dijets: 5 10 % of jet production
 - diffraction: suppression of QCD radiation
 - diffraction: understand QCD radiation

- **9** forward jets: \sim 20 % of jet production
- forward jets probe QCD radiation along the parton ladder
- is there more than NLO calcs and DGLAP evolution ?
- understand QCD radiation pattern !
- diffractive dijets: 5 10 % of jet production
- diffraction: suppression of QCD radiation
- diffraction: understand QCD radiation
- diffraction: the bridge to multiple scatterings

- forward jets: \sim 20 % of jet production
- forward jets probe QCD radiation along the parton ladder
- is there more than NLO calcs and DGLAP evolution ?
- understand QCD radiation pattern !
- diffractive dijets: 5 10 % of jet production
- diffraction: suppression of QCD radiation
- diffraction: understand QCD radiation
- diffraction: the bridge to multiple scatterings

understand radiation in forward region: suppression of radiation and multiple scatterings

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 - p.19

Diffractive Parton Density Functions

H1 2002 σ_r^D NLO QCD Fit H1 preliminary $z \Sigma(z,Q^2)$ $g(z, Q^2)$ Q² [GeV² Singlet Gluon 0.2 1 6.5 0.1 Ν diffractive pdf 0 0 0.2 1 15 р 0.1 p' 0 0 measure diffractive 0.2 1 90 cross section in 0.1 $6.5 < Q^2 < 120 \; {\rm GeV}^2$ 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $x_{I\!\!P} < 0.05$ Ζ Ζ $0.01 < \beta < 0.9$ H1 2002 σ,^D NLO QCD Fit (exp. error) extract diffractive PDF (exp.+theor. error) using LO/NLO DGLAP H1 2002 σ, ^D LO QCD Fit

Diffractive Parton Density Functions

H1 2002 σ_r^{D} NLO QCD Fit

Diffractive Jets at large Q^2

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 - p.21

Diffractive Jets at large Q^2

H. Jung, HERA results and implications for LHC physics, LHC days in Split, Croatia, 5-9 Oct 2004 – p.21

Diffractive dijets at the Tevatron

- \bullet factor \sim 10 too large
- factorization breaking in diffraction, why ?
- study dijets in γp at HERA

- suppression due to multiple scatterings ???
- different models

Z_{IP}

Diffractive photoproduction of dijets

- with x_{γ} turn on res. photons
- resolved photon similar to proton ...
- study suppression of diff. jet production

Diffractive photoproduction of dijets: bridge to diffraction in pp

- DIS dijets agree with NLO calculation
- resolved photon ~ proton !!!
- photo-production data factor
 ~ 2 larger than NLO calc in
 resolved γ and direct γ

Diffractive photoproduction of dijets: bridge to diffraction in pp

- DIS dijets agree with NLO calculation
- resolved photon ~ proton !!!
- photo-production data factor
 ~ 2 larger than NLO calc in
 resolved γ and direct γ

Important also for diffractive Higgs production at LHC !!!

Performance and Program of HERA II

- detector and lumi upgrade
- efficient data taking since Oct 2003
- 1st results presented at ICHEP04
- Program:

 F_2 at high Q^2 (high stat.) polarized charged current, electroweak sector $xF_3(x,Q^2)$, $F_2^{c\bar{c}}(x,Q^2), F_2^{b\bar{b}}(x,Q^2)$ AND also high stat. for heavy quark x-sections, high E_T jets, parton dynamics in new range, multiple scatterings etc, diffraction - new proton spectrometer

New, precise measurements from HERA to come

HERA - LHC workshop

Aims of the Workshop:

- To identify and prioritize those measurements to be made at HERA which have an impact on the physics reach of the LHC.
- To encourage and stimulate theory and phenomenological efforts
- To examine and improve theoretical and experimental tools
- To increase the quantitative understanding of the implication of HERA measurements on LHC physics

Midterm meeting next week !!!

Conclusions and Summary

- > F_2 total cross section, 2 3 % precision reached:
- ✓ standard DGLAP plus fixed NLO matrix elements at $Q^2 > 1$ GeV² ok BUT more than DGLAP at small Q^2 needed
- high precision measurements of jets from central to forward region performed either NLO predictions have very large scale uncertainties ???
 Or measurements much larger than standard DGLAP + NLO
 need to go beyond DGLAP, BFKL ... CCFM ???
- Diffraction understand parton radiation
 - bridge to multiple scatterings
 - 🖝 measure it ...
- Future:
 - more data still to come ... HERA 2, and ?
 - fruitful collaboration between HERA and LHC

Overlap of HERA and the LHC

- Q², or p²_t or E²_t gives the maximum possible k_t
- for most applications small k_t important
- large Q² gives larger tail of distribution
- goto uPDFs ?

Is our picture correct ?

- is Q^2 , or p_t^2 or E_t^2 the relevant scale ?
- Iargest x-section at small k_t
- \checkmark it is the k_t that matters....

\checkmark k_t 's in the same range for HERA and LHC !!!!