1954 - 2004

LHC heavy ion physics

Guy Paić
Instituto de Ciencias Nucleares
UNAM
Mexico

outline

- LHC parameters
- new quality expected at the LHC
- intermediate p_t range
- parton energy loss at RHIC and LHC
- charm parton energy loss
- quarkonia suppression

Present knowledge

We are entering the minijet era

The dominant part of the minijet Xsection comes from from semihard processes between partons (mostly gluons) carrying very small longitudinal momentum fractions $x \le 0.1$ and $p_T \ge 2$ GeV/c

Minijet X-section

From Capella et al.: Phys. Letters PRL 38(1987)2015

What's new at the LHC?

- Higher energy density ϵ_0 at earlier time τ_0 : "sQGP" \to QGP ?
- Jet physics can be probed to $p_T > 100 \text{ GeV}$.
- *b, c* quarks are plentiful, good probes.
- Different x_{bjorken} ranges

$$\sigma_{LHC}^{c\bar{c}} \approx 10 \times \sigma_{RHIC}^{c\bar{c}}$$
$$\sigma_{LHC}^{b\bar{b}} \approx 100 \times \sigma_{RHIC}^{b\bar{b}}$$

Testing new parts of the PDF Small x

Window on the rich phenomenology of high-density PDFs

shadowing / saturation effects / Color Glass

Attempts at sorting the phenomena

 Before we had the so called hard (scarce) probes and the soft (plentiful) probes

Now the nomenclature has been enriched by an intermediate range

Particle production vs P_T

puzzles p/π-

RHIC data seem to follow the turn over. However where is the turnover ?and what is the underlying physics Unclear at RHIC and even more so at LHC

Reco: Phys. Rev. C68 044902 (2003)

Coal: Phys. Rev. C68 034904 (2003)

Hydro: Phys. Rev. C67, 044903 (2003)

S+Q: 130 GeV data - Phys. Rev. C65, 041902

Recombination+Fragmentation Model

basic assumptions:

 at low p_t, the quarks and antiquark spectrum is thermal and they recombine into hadrons locally "at an instant":

$$q\bar{q} \rightarrow M \qquad qqq \rightarrow B$$

- ➢ features of the parton spectrum are shifted to higher p_t in the hadron spectrum
- at high p_t, the parton spectrum is given by a pQCD power law, partons suffer jet energy loss and hadrons are formed via fragmentation of quarks and gluons

Recombination: Pro's & Con's

Pro's:

- for exponential parton spectrum, recombination is more effective than fragmentation
- baryons are shifted to higher p_t than mesons, for same quark distribution
- understand behavior of protons!

- recombination violates entropy conservation
- gluons at hadronization need to be converted

Quark coalescence / recombination

- Evidence of quark coalescence?
 - Particle dependence of elliptic flow.
 - Constituent quark scaling.

- Is this a consistent picture?
- Can it also explain ...
 - Anomalous B/M ratio?
 - Particle dependence of hadron suppression?

Consequences for ALICE physics

- Necessity: enlarge the PID range as much as possible
- Use lambda detection as far as possible in pt
- Use to the utmost the relativistic rise of ionization in TPC
- Think about new PID detctors.

Jet Quenching

High-energy parton loses energy by rescattering in dense, hot medium.

Radiative energy loss: $dE/dx \square \rho L \langle k_T^2 \rangle$

Scattering centers = color charges

medium modifed jet

Can be described as medium effect on parton fragmentation:

$$D_{p \to h}(z, Q^2) \to \tilde{D}_{p \to h}(z, Q^2) \approx D_{p \to h} \left(\frac{z}{1 - \Delta E / E}, Q^2\right)$$

Energy loss in QCD

Density of scattering centers

Scattering "power"
$$\hat{q} = \rho \int q^2 dq^2 \frac{d\sigma}{dq^2} \equiv \rho \sigma \langle k_{\rm T}^2 \rangle = \lambda_{\rm F}^{-1} \langle k_{\rm T}^2 \rangle$$

Property of medium (range of color force)

For power law parton spectrum ($\sim p_{\rm T}^{-\nu}$) energy loss leads to an effective momentum shift for fast partons (BDMS):

$$\Delta p_T \approx -\alpha_s \sqrt{\pi \hat{q} L^2 p_T / \nu}$$

With expansion:
$$\hat{q} \Rightarrow \hat{q}_{\text{eff}} = \frac{2}{L^2} \int_{\tau_0}^{\tau_0 + L} d\tau (\tau - \tau_0) \hat{q}(r_\tau, \tau)$$

Due to the medium induced gluon radiation of hard parton travelling a distance L

Transport coefficient: $\hat{q} = \langle \hat{q}_t^2 \rangle_{medium} / \lambda$

Average energy loss BDMPS: $(\Delta E) \propto \alpha_s C_R \hat{q} L^2$

Importance of the parameter $\mathcal{L} \, \mathcal{A} \, \, \widehat{q}$

Due to the phase space the surface emission is the most probable close to the surface! \hat{q}

There is nothing we can do about that!!

• Specific energy loss \widehat{q} function of the density profile!

Results from a toy MC model based on the work of Wiedemann and Salgado:

A.Dainese, C. Loizides, G.P: arXiv:Hep-ph/0406201

Probability of no energy loss for a constant length

Energy loss difference between quarks and gluons

Two ways to go to finite parton energies

Reweighted: truncate_E $P(\Delta E)$ @ $\Delta E = E$ And renormalize to 1 using $\int_{0}^{\infty} d\varepsilon P(\varepsilon)$

Non reweighted: add δ -function: $\delta(\Delta E - E)\int d\varepsilon P(\varepsilon)$

$$E = 50 GeV$$
, $\hat{q} = 1 GeV^2$ / fm , $L = 4 fm$

WITH A constant transport coefficient one cannot describe the centrality dependence at RHIC (STAR)

$$R_{AA}(p_t)$$
 at $\sqrt{s_{NN}}$ = 200 GeV (Au–Au) for \widehat{q} = 15GeV²/fm

Parton by parton approach in the PQM

• Define "local" transport coefficient for every parton $\widehat{q}(\xi;b) = k \times T_A T_B(x_0 + \xi u_y;b)$

• Using $I_n \equiv \int_0^\infty \xi^n \hat{q}(\xi; b) d\xi$ n=0,1

* STAR h⁺, h 0-5%

PHENIX h⁺, h 0-10%

PHENIX π^0 0-10%

k = 5 × 10⁶ fm

Using the parton by parton approach the centrality is well described

The turning off awayside jets also described

More predictions for RHIC:azimuthal dependence

Extrapolaton to different energies

Ansatz:

$$\hat{q} \propto n_{
m initial}^g$$
 and $n^{
m g} \propto {
m A}^{0.383} \, \left(\sqrt{s_{
m NN}}
ight)^{0.574}$ (saturation model)

•
$$n_{\mathrm{Au-Au, 62.4\,GeV}}^{\mathrm{g}} \simeq 0.5 \times n_{\mathrm{Au-Au, 200\,GeV}}^{\mathrm{g}}$$

 $\langle \hat{q} \rangle_{\mathrm{Au-Au, 62.4\,GeV}} \simeq 7 \; \mathrm{GeV^2/fm}$

•
$$n_{\mathrm{Pb-Pb,\,5.5\,TeV}}^{\mathrm{g}} \simeq 7 \times n_{\mathrm{Au-Au,\,200\,GeV}}^{\mathrm{g}}$$

 $\langle \hat{q} \rangle_{\mathrm{Pb-Pb,\,5.5\,TeV}} \simeq 100~\mathrm{GeV^2/fm}.$

Case of the LHC

All models do not predict the same for LHC

left: PQM non-reweighted, right: Vitev hep-ph/0209161

Corona effect

Emission of hard hadrons is predominantly from a thin surface layer. But "jets" still originate from throughout the volume:

Lower E loss for heavy quarks?

- In vacuum, gluon radiation suppressed at $\theta < m_Q/E_Q$
 - → "dead cone" effect
- Dead cone implies lower energy loss (Dokshitzer-Kharzeev, 2001)
- Detailed calculation confirms this qualitative feature, although effect is small and uncertainties significant (Armesto-Salgado-Wiedemann, 2003)

$$R_{AA}^{D,B}(p_t) = \frac{1}{N_{coll}} \times \frac{dN_{AA}^{D,B} / dp_t}{dN_{pp}^{D,B} / dp_t}$$

Yu.L.Dokshitzer and D.E.Kharzeev, Phys. Lett. **B519** (2001) 199 [hep-ph/0106202]. N.Armesto, C.A.Salgado and U.A.Wiedemann, Phys. Rev. **D69** (2004) 114003 [hep-ph/0312106].

Heavy-flavour production

pp collisions: pQCD factorization

$$d\sigma^{D} = PDFs \otimes d\hat{\sigma}^{c} \otimes Fragm.$$

(pA) AA: binary scaling for hard yields $dN_{AA}^D = dN_{pp}^D \times N_{coll}$ "broken" by initial-state effects (shadowing, ...) and final-state effects (energy loss, coalescence, ...)

Estimates of R_{AA} for D and B

• Ingredients: BDMPS quenching weights for heavy quarks + Glauber-based medium geometry + LHC medium density extrapolated on the basis of hadron suppression at RHIC

RHIC analysis: A.Dainese., C.Loizides and G.Paic, hep-ph/0406201. N.Armesto, A.D., C.A.Salgado and U.A.Wiedemann, *in preparation*.

Experimental study of heavy flavours in HIC at the LHC

The dedicated HI experiment

HI Letter of intent

Strong HI program

Tracking & Vertexing

• D mesons $c\tau \sim 100-300 \,\mu\text{m}$, B mesons $c\tau \sim 500 \,\mu\text{m}$

Secondary vertex capabilities! → Impact param. resolution!

Lepton and Hadron ID

- D and B: large B.R. to leptons: $\sim 10\% e + \sim 10\% \mu$
 - ALICE:
 - electrons: Transition Rad. + dE/dx in $|\eta| < 0.9$ and $p_t > 1$ GeV/c
 - muons: 2.5< η <4 and p_t >1 GeV/c (use p_z to punch through abs.!)
 - CMS (ATLAS):
 - muons: $|\eta| < 2.4$ (3) and $p_t > 3.5$ (4) GeV/c
 - electrons in EM cal? (no heavy-ion studies yet)
- With leptons, difficult to measure D(B) p_t distr. and go to low p_t (loose p_t correlation)
 - → Exclusive hadronic decay channels (charm)
 - → Need PID (kaons!) to reject huge combin. background in AA
- ALICE hadron ID: large TPC + high-res TOF + RICH

ALICE: Exclusive charm $D^0 \rightarrow K^-p^+$

- Ideal tool to study R_{AA} and low p_t effects
- Large combinatorial background (dN_{ch}/dy=6000 in central Pb-Pb!)
- Main selection: displaced-vertex selection
 - pair of opposite-charge tracks with large impact

Invariant mass analysis to "count" D⁰

D⁰ Results

(K,π) Invariant Mass distribution (p_t –integrated) in Pb-Pb

$$S/B \approx 10\%$$

Statistical significance:

$$S/\sqrt{S+B} \approx 40$$

N.Carrer, A.Dainese and R.Turrisi, J. Phys. **G29** (2003) 575. A.D. PhD thesis (2003), nucl-ex/0311004.

- Open Beauty with Electrons
- Inclusive B → e[±] + X:
 - electron ID + cut on its p_t & on its impact parameter d0

S/(S+B)

S per 10⁷ Pb-Pb events

 $p_{\rm t}$ > 2 GeV/c, d0 > 180 μ m: 50,000 electrons with S/(S+B) = 90 %

M.Lunardon and R.Turrisi

Open Beauty with Muons (1)

- Single muon cut p_t > 2 GeV/c
- Dimuon combinatorial bkgd subtracted with evt-mixing

Open Beauty with Muons (2)

- Combined fit of low-mass, high-mass dimuons and single muons with shapes from MC to extract muons from B
- Use MC to extract

$$\sigma^B$$
 vs p_t^{\min}

down to ~2 GeV/c!

Nuclear Shadowing and Charm

- Bulk at the LHC: x ~ 10⁻³-10⁻⁴
- Pb nucleus ~ 10⁵-10⁶ partons (mainly gluons)
 - 'they are so close that they fuse'

- Reduces charm yield at low p_t
- Look at low-p_t D in pPb!

Specificities of heavy flavor production in heavy ion collisions @ LHC

	N(qq) per central PbPb (b=0)		
	SPS	RHIC	LHC
charm	0.2	10	120
bottom		0.05	5

- large primary production
- melting of Y(1S) by color screening
- large secondary production of charmonia thermal production, kinetic recombination, statistical hadronization, DD annihilation, B hadron decay

rich program & complex background simultaneous measurements of hidden & open heavy flavors is a must

Shopping list

- quarkonia :
- resonances ρ, ω, φ, J/ψ, ψ', Υ, Υ', Υ"
 - versus Pt
 - versus centrality
 - versus reaction plane
 - versus system-size
- open heavy flavors
 - single muon pt distributions
 - unlike-sign dimuon @ high mass
 - unlike-sign dimuon @ low mass
 - like-sign dimuon
 - electron-muon coincidences
 - tri-muons in pp collisions

Centrality dependence of quarkonium yield

Low p_t^µ
trigger selection
+ sharp p_t^µ cut
p_t^µ > 1 GeV/c

S. Grigoryan, 2003

B. Forestier

V. Barret

P. Dupieux

Pb – Pb collisions

High p_t^μ trigger selection + sharp p_t^μ cut p_t^μ > 3 GeV/c

P_t dependence of quarkonium yield

Semi-central Pb-Pb collisions

1 month of data taking

A. De Falco, 2004

Υ'/Υ ratio versus P_t

J.P.Blaizot and J.Y.Ollitrault, Phys. Lett. B 199 (1987) 499; F.Karsch and H.Satz, Z. Phys. C 51 (1991) 209; J.F.Gunion and R.Vogt, Nucl. Phys. B 492 (1997) 301

- Melting depends on
 - resonance formation time,
 dissociation temperature & P_t
 - QGP temperature, lifetime & size
- Ratio is flat in pp (CDF data)
- Any deviation from the pp (pA)
 value is a clear evidence for the
 QGP (nuclear effects cancel-out)
- The P_t dependence of the ratio exhibits sensitivity to the QGP characteristics

- full & realistic simulation
- error bars = 1 month of central Pb-Pb (10%)

E. Dumonteil, PhD Thesis (2004)

Conclusion

- Importance of the whole pt range at LHC
- Dominance of hard processes with soft particles!
- Importance of particle identification
- · A rich new frontier for the field!

