

Intercalibration of ECAL with Cosmics

Q. Ingram Paul Scherrer Institute

Motivation, Concept, Issues

Tests at PSI

Simulations

Conclusions

Motivation

ECAL has 36 (+ 1 spare) Supermodules, each with 1700 Xtals

Only 1 tested in beam in 2004

No test beam 2005, maybe not 2006

Wish: few % inter-calibration of channels before LHC Some success transporting lab measurements (MeV signals!) Fast intercalibration with jet trigger at start of CMS should work

A pre-calibration with cosmics will:

- ensure each channel is properly tested
- provide intercalibration at few % level
- ensure systems (eg monitoring) are maintained

ca 3 x 0.5 metres, 2 tonnes

(Yellow frames for transport)

Q. Ingram, PSI

- wire chambers above and below (?)

CMS	Issues			
SIGNAL:	Cosmic muon traversing f - deposits ca 250 Me - generates ca 1000 p	ull length of Xta V, photo-electrons	al: s in APDs	
<u>NOISE:</u>	Electronics noise: 40–50	MeV rms, chan	nel dependent:	
	→ raise APD gain from { (Track gain with monitoring)	<u>50 to 200</u> . ıg system)	S/N then 20	
<u>RATE:</u>	300 /wk at 0 deg. ~ cos	² (Θ) → 75/ wk a	nt 60 deg	
SYSTEMATICS: Smooth eta-dependence (P _µ , geometry). Other?				
NUCLEAR CO	DUNTER EFFECT: Adds of	a 100 MeV to 1	0% of events	
ABSORBER /	ABOVE LOWER SCINTILL	ATOR? N to	nnes (no)	
Split, 8 th October 20	Q. Ingram, PSI		5	

Protons, electrons negligible

Tests at PSI

K. Deiters, Q. Ingram, D. Renker, T. Sakhelashvili

Feasibility stu	dy to check a) Decent signal		
	b) Rate estimate		
	c) Effect of absorber in trigger		
<u>Set-up:</u>	1 Xtal wrapped in Tyvek APD gain 250		
Amplifier noise 6 MeV rms (cf 250 MeV s			
	Trigger scintillators restrict entry exit		
	Lead brick		
	Temp. correction (20–30 deg): - 8.5% /deg		
<u>Measured:</u>	0 deg, 65 deg		
	13 deg with/without Xtal wrapped in 3 mm Pb		
Split, 8th October 2004	Q. Ingram, PSI	7	

Results of Tests at PSI

0 deg; 11 ³/₄ days

Split, 8th October 2004

Q. Ingram, PSI

Conclusions from Tests at PSI

Clear signal 0, 13 and 65 deg, $\,\sigma\,$ ~ 15%

- **Rate in line with expectations**
- No need for absorber
- No big difference if Xtal wrapped in Pb (to simulate Xtal in matrix)
- { Multiple coincidences needed for clean trigger
 (eg suppress coincidence from light guide Cerenkov) }

Statistical accuracy:

15/Sqrt(300) =	0.9% per week	(0 deg)
and	1.8%	(60 deg)

3 m long; 0.5 m wide at back *(i.e. above in this picture)*

Xtals point divergently at back

± 6 deg acceptance per Xtal for full solid angle

Cannot get detectors close at back (electronics etc)

 \rightarrow Detector scale: 5 x 1 m at back; 3 x 0.6 m at front

Defining Muon Trajectories

ESSENTIAL: trajectory must enter front and leave back of SAME Xtal

Original idea: Use surrounding Xtals as veto. No chambers (simple).

But: Noise means veto level must be ~10-15% of signal. Not sure it would work (no simulations).

<u>Next idea:</u> Define trajectories with wire chambers. Only practical chambers found are CMS Muon Drift Tubes (DTs).

But: DTs designed for multi-GeV, normal incident muons: good resolution but massive → multiple scattering

- cannot give mm resolution at Xtal entrance/exit
- performance "deteriorates" at large angles (eg ≥ 45 deg)

Simulations: With realistic estimates of multiple scattering - signal has long wings

- rate falls fast with (ineffective) tight geometrical cuts
- ➔ abandon idea of using chambers for tight cuts

But now simulate applying vetos by adjacent Xtals –

Final idea:Use surrounding Xtals as veto, withOne chamber ONLY at front face (closer, smaller)
and apply loose cuts on trajectory

Simulations

Thanks to W Bertl (PSI) & E Frlez (U Virgina) for supplying the working GEANT package

Based on GEANT simulations developed and tested at PSI.

Input: vertical cosmic ray muon flux truncated at 10 GeV/c

Xtal defined as 24 x 24 mm square rod in centre of 23 cm thick block.

8 similar Xtals defined around central one

Uniform illumination of 10 x 10 cm area with Xtal at centre and incident angle < 20 deg.

Split, 8th October 2004

GEANT Muon Spectrum

0 – 1 GeV/c

0 – 20 GeV/c

10

0 - 1 GeV/c

Monoenergetic muons, with clean cuts on entrance and exit positions

Tail at 0.5 GeV/c due to muons leaving Xtal and then scattering back in.

Simulations

<u>Smear coordinates</u> based on estimates of spatial resolution:

Showed using tight geometrical cuts with likely resolution still leaves long tails and with quickly reduced rates

Apply Veto: on largest energy deposit in single neighbouring Xtal

Loose geometrical cuts – i.e. smearing is effectively almost ignored, but track roughly correct.

Energy deposited as function of veto level set on neighbouring Xtals.

No additional cuts {i.e. "no chambers" but |x|, |y| < 5 cm, $\Theta < 20$ }

Simple mean from 100 to 500 MeV as function of Veto Level (normalised to Veto at 0 MeV)

Rate vs Veto Level

Rate with 35 MeV Veto is double that with perfect geometrical cut

Conclusions

Will ensure each channel properly tested

Few % intercalibration looks feasible – signal, noise, rate

Sensitivity to Veto Level ~1%

Systematic variation over length

Edge Xtals different (not full veto)

First check with part of Supermodule calibrated in beam 11/04