The CMS Tracker

<u>Outline</u>

- Physics Requirements & Environment
- Pixel Detector
- Silicon Strip Detector
 - Layout
 - Mechanics & Modules
 - Production Status & Problems
 - Performance

Ariane Frey, CERN

LHC Days in Split, October 2004

Search for the Standard Model Higgs

Higgs Mass	Decays
80-140 GeV	$H \rightarrow \gamma \gamma$
140-700 GeV	$H \rightarrow ZZ^{(*)} \rightarrow 4l$
500-1000 GeV	$ \begin{array}{l} H \rightarrow ZZ \rightarrow ll \nu \nu \\ H \rightarrow ZZ \rightarrow ll jj \\ H \rightarrow WW \rightarrow l \nu jj \end{array} $

Search for SUSY: Higgses and sparticles (τ, b final states) b Physics: CP violation, oscillations...

• Good photon/electron ID

- high momentum tracks (muons, electrons) and jets
- excellent geometrial and kinematical acceptance
- good impact parameter resolution
- secondary vertices (b, τ)

The LHC environment

- Bunch crossing rate 40 MHz
- on average ~1000 charged tracks/BX

Need fast read-out bunch crossing identification high granularity small cell occupancy radiation resistant devices

@ Pixel:
2.5×10¹⁵ hadrons/cm²
1 MGray (Joule/kg)
@ Strips:
2×10¹⁴ hadrons/cm²
100 kGy

Pixel Vertex Detector

- 3 barrel layers (r = 4, 7, 11 cm)
- 2 forward disks (staged)
- Pixel size 100 μm × 150 μm

4 10⁷ pixels

 $\text{IP}_{\text{trans.}}$ resolution ~ 20 μm for tracks with P_t ~ 10GeV

With this cell size occupancy is ~ 10⁻⁴ this makes Pixel seeding the fastest starting point for track reconstruction despite the extremely high track density

Highest radiation environment:

- Specific program of sensor R&D
- n⁺-on-n technology

Lorentzangle 28⁰ at 4 T

Pixel Vertex Detector Status

Preproduction of barrel and forward sensors submitted

- P-spray on oxygenated Silicon (CIS) for barrel
- SINTEF will produce sensors for forward

2003 : Readout chip translated to deep submicron (IBM 0.25 μm process)

⇒Very successful, 2nd (probably last) iteration submitted on Aug 23rd

Radiation hard Silicon Strip sensors ATLAS, CMS, ROSE ...

Single-Sided Lithographic Processing (AC, Poly-Si biasing)

N+ Implants

N+ Implants

Radiation hardness "recipes"

P-on-N sensors work after bulk type inversion, Provided they are biased well above depletion

Match sensor resistivity & thickness to fluence To optimize S/N over the full life-time

Use <100> crystal lattice orientation instead of <111> (no increase in strip capacitance & noise)

Mechanical Structures

Lightweight Carbon fiber structures that carry the electronics boards and cooling circuitry

Almost all in hand !

Ariane Frey, CERN

Inner Barrel

3800 modules (1 sensor)

6 inner disks

2 units

Ariane Frey, CERN

Endcaps

288 TEC petals

Ariane Frey, CERN

5200 TOB modules

Ariane Frey, CERN

Module Components

6,136 Thin sensors 18,192 Thick sensors

6,136 Thin detectors (1 sensor) 9,096 Thick detectors (2 sensors) } 15,232

3112 + 1512 Thin modules (ss +ds) 5496 + 1800 Thick modules (ss +ds)

9,648,128 strips = electronics channels

75,376 APV chips

25,000,000 Bonds

445 m² of silicon wafers 210 m² of silicon sensors (162m² + 48m²)

Assembly & Testing

Thermal/quick test hybrid

Gantry makes modules

Quick test unbonded module

Thermal cycle module

Final pinhole test Ariane Frey, CERN

Bonded module test

Assemble/test petals/rods

Wirebond

Petal/rod burn-in

Module Tests & Sensor Procurement

Ordered ≈ 700 thin sensors from Hamamatsu

Delivery almost complete.

Quality is excellent !

Originally, contract for all \approx 18,000 thick sensors awarded to STM.

However, continuous problems were detected:

High leakage currents, scratches, CMN on modules, aluminum corrosion,...

25

20

15

5

qualification batch of 1000 sensors. 7000 sensors from HPK)

New batch has significantly improved 10 quality, however, longterm test still shows high rate of failure \Rightarrow batch not qualified

(>72 h test, 233 sensors, 12 failures \Rightarrow 5 %) 1000 h test \Rightarrow 3 out of 26 fail (>10%)

Initial delivery of thick sensors by Hamamatsu delayed, but started in May 04 -> Quality is excellent

Leakage current Longterm test

Front-End Hybrid

- Flex Kapton circuit laminated onto ceramic (Cicorel/Hybrid SA)
- Production started in Spring '03
- Since then, 3 different problems encountered and solved
 - \checkmark Flex cable stability \Rightarrow additional stiffener introduced
 - Wire bonding weakness \Rightarrow optimization of parameters
 - ✓ Hybrid Via problem ↓

Problem solved now (increased vias to 250 $\mu\text{m},$ additional Kapton layer), but lost about 6 months !

Ariane Frey, CERN

Production completely driven by delivery of FE hybrids (& thick sensors)

All other parts (mechanics, on- and off-detector electronics) well on path.

Status on Module production today:

- 4.000 Hybrids delivered to the Gantries
- 2.850 Modules assembled (670 ST and 2180 HPK)
- 2.350 Modules bonded
- 2.300 Modules tested
- 2.150 Modules met our acceptance criteria
- ~ 94 % global yield of production

Schedule: restart module production at full speed in Jan '05

Tracker ready for installation in Pt. 5 November 2006

		1	2	3	4	5	6	7	8	9	10
TOB completed											
TIB reception at CERN & tests			_								
Move TIB/TID inside OB											
Tests & cabling											
Reception & tests TEC1						_					
Move TEC1 inside ST											
Reception & tests TEC2									_		
Move TEC2 inside ST											
Tests & cabling											
Prepare TK for transport											

Ariane Frey, CERN

LHC Days in Split 2004

Jan

06

Performance

Silicon is a solid state material, and the strong cooling and mechanical requirements cost a price....

Tracker material budget

Track finding efficiency

Testbeam

May & October 2004 test beam @ CERN with 25 ns bunched muon/pion beam Multiple TOB rods & 2 TEC petals (number of channels > # channels ALEPH TPC)

TOB Cosmic Rack : Holds up to 20 TOB rods Test structure for integration tests

Tracking with standard CMS software-

Ariane Frey, CERN

Summary

Tracking at the LHC is a very challenging task:

- harsh radiation environment, extremely high rates
- Tracker is essential ingredient of CMS
 - world largest Si strip tracker
 - all silicon: pixels + strips
- Tracker production delayed, but major obstacles overcome. Will be ready for installation end of 2006.
- Test beam results agree with expectations.

We are eager to see the first tracks from collisions

Ariane Frey, CERN

Back up slides

Ariane Frey, CERN

Tracker Alignment

Challenge: Alignment uncertainties should not degrade intrinsic tracker resolution: ≈20µm

Final Alignment: Use Tracks in order to achieve the desired level of alignment uncertainties of $\approx 10 \mu m$. A combination of track based alignment and laser alignment will insure an accurate monitoring of time dependent alignment effects.

Ariane Frey, CERN

- 4 Si sensors quality assurance centers
- 2 Si sensors irradiation facilities
- 2 centers for FE hybrid assembly/bonding (40/day)
- 7 module assembly centers (Gantry) (>90/day)
- 13 bonding centers and QA&C (>130000/day)

43 major working points

- 10 centers where module are installed into mechanical supporting structures
- 4 centers where sub-detectors are assembled
- 1 Tracker assembly center

Momentum resolution

Most previous collider experiments have used large drift chambers (TPC, jet chamber, ...) \rightarrow many samples, point resolution >> 100 µm but large drift times (O(us))

but large drift times (O(µs))

Need detectors with smaller structures (I.e. fast charge collection times)

Goal:

Ariane Frey, CERN

This momentum resolution allows to reconstruct $Z \rightarrow \mu^+\mu^-$ with $\Delta m_z < 2$ GeV up to $p_t \sim 500$ GeV

for B = 4 T , L = 1.1 m (CMS) sagitta s = 200 μ m $\sigma(s) \approx 20 \mu$ m Thickness of a human hair: 40 μ m LHC Days in Split 2004

