2004 LHC Days in Split Split, Croatia, 5-9 October, 2004

Importance of τ's in the MSSM Higgs Boson Discovery

R. Kinnunen

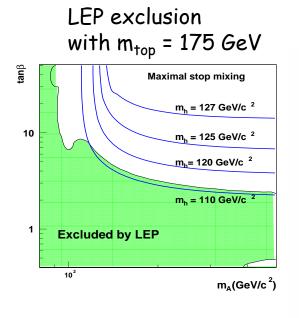
Helsinki Institute of Physics

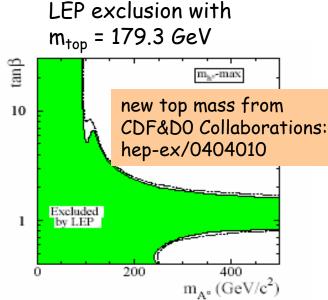
<u>Introduction</u>

In the MSSM, the SM-like lighter scalar h is expected to be found in several decay channels in the region of large m_A and $tan\beta$

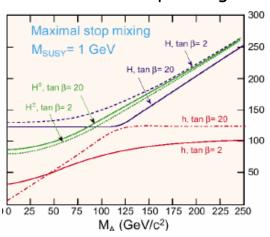
To best disentangle between SM and MSSM, the heavy bosons, A, H and H± should be looked for !

Couplings to fermions and weak bosons (when compared to SM) lead to specific MSSM Higgs search strategies at large $tan\beta$


Importance of decays to τ 's, $H/A/h \rightarrow \tau\tau$ and production in association with b's in gg->bbH/A



MSSM parameter space and mass spectrum


LEP-type SUSY scenario assumed (for most of the LHC studies):

 M_2 = 200 GeV/c², μ = -200 GeV/c², M_{gluino} = 800 GeV/c², $M_{squark,slepton}$ = 1 TeV/c² No stop mixing (X_t = 0) or maximal stop mixing (X_t = 2450 GeV/c²)

MSSM Higgs boson mass spectrum with maximal stop mixing

Mass of the lighter scalar h with two-loop/RGE-improved radiative corrections:

 m_h^{max} = 113 (116) GeV for no stop mixing

 m_h^{max} = 127 (132) GeV for maximal stop mixing

with $m_{top} = 175 (179.3) GeV$, $M_S = 1 TeV$

Heavy neutral MSSM Higgs bosons H and A

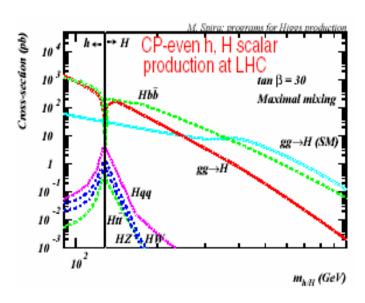
Production through gg->H/A and gg->bbH/A

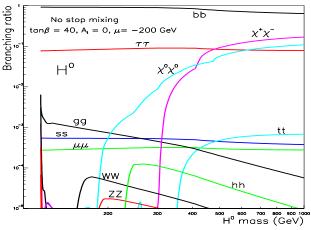
Associated production $gg \rightarrow bbH/A$ dominates at large $tan\beta$

-> b taggging can be used to suppress Z,γ^* , W+jet and QCD multi-jet backgrounds leading to real (or fake) $\tau\tau$ pair production

Branching fractions at large $tan\beta$ (>10):

BR(H,A -> ττ) ~ 10%

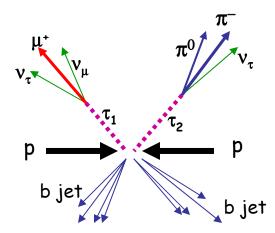

H,A -> bb dominates


-but background reduction difficult, not yet shown to be really useful

BR(H,A -> $\mu\mu$) small ~ 3×10^{-4}

- but precise mass measurement possible

At large m_A , sensitivity to SUSY parameters (μ and M_2) due to opening of $H_A \rightarrow \chi \chi$ decay modes



gg->bbH/A, H/A -> ττ channels

Final states from $H,A \rightarrow \tau\tau$:

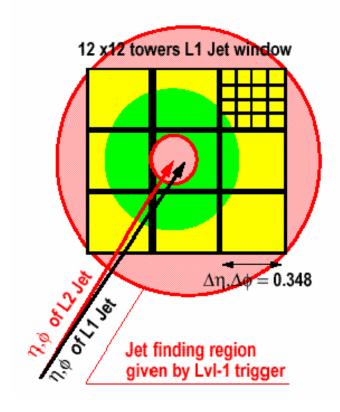
2 leptons, BR ~ 12.4% lepton + τ jet, BR ~ 45.6% 2 τ jets, BR ~ 42% τ jet = hadronic τ decay

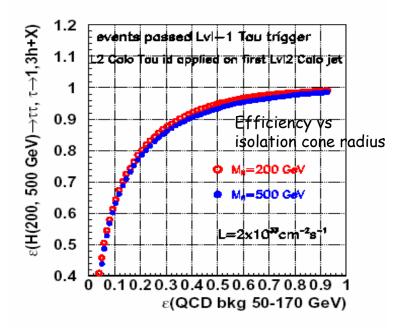
Backgrounds from

 $Z,\gamma^* \rightarrow \tau\tau$, tt, Wt, W+jets, bb, QCD multi-jet events

Challenges with $\tau\tau$ decay modes:

- Suppress the fake τ 's from hadronic jets (QCD multi-jet, W+jet backgrounds)
- Trigger on fully hadronic final states, 2τ jets (also at low m_A)
- Reconstruct the Higgs boson mass from E_t^{miss} + leptons, jets

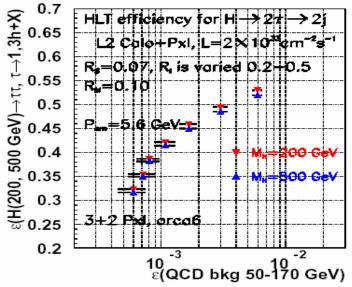

Hadronic jet suppression (at trigger level and offline) is based on narrowness and low multiplicity (1 or 3 prongs) of a τ jet


Hadronic Tau trigger

Requirements: 3(6) kHz output rate at Level-1 at low(high) luminosity Reduction of hadronic QCD events by ~10³ at HLT

Level-1: Narrow hadronic jet in calorimeters

Level-2: Isolation of the jet core $(\Delta R < 0.13)$ in the fine-grained EM calorimeter

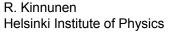

Level-3 Tau trigger

with isolation in the Pixel detector or in the full tracker (Pixel + Silicon)

Method:

- Reconstruction of tracks around the Level-1 jet direction in the Pixel detector or in the Pixel+Silicon tracker
- Small signal cone ($\Delta R_s = 0.07$) around the hardest track
- Larger isolation cone around jet direction

Efficiency (QCD vs H-> $\tau\tau$ -> 1/3 prong jets) as a function of the isolation cone size



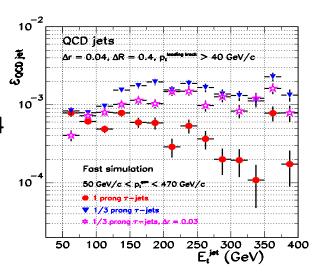
H-> $\tau\tau$ -> 2τ jets, m_H=200 GeV: Signal efficiency for a QCD background suppression of 10^3 at L= 10^{33} cm⁻²s⁻¹

LvI-2 T - jet axis

signal cone R

HLT path	eff.	cpu[ms]
Calo+Pixel	0.41	59
Calo+Tracker	0.45	130

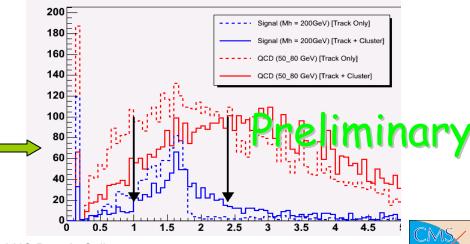
2004 LHC Days in Split 5-9 October, 2004, Split, Croatia


Hadronic τ identification

Algorithm:

- p_T (leading track) > 40 GeV in a jet with E_T > 60 GeV
- -two other tracks, p_T > 1 GeV, allowed in a small signal cone of Δr < 0.04 around the leading track
- isolation of the signal cone in a larger cone of $\Delta R = 0.4$

QCD jet suppression ~ 1000 τ jet efficiency ~ 30% for m_A = 500 GeV


 $\tau \rightarrow 3$ prong decays can be used too!

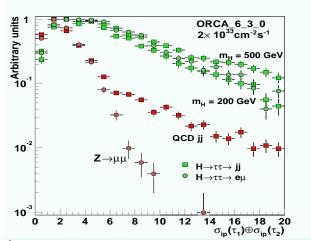
Further methods exploiting τ properties

τ tagging with mass

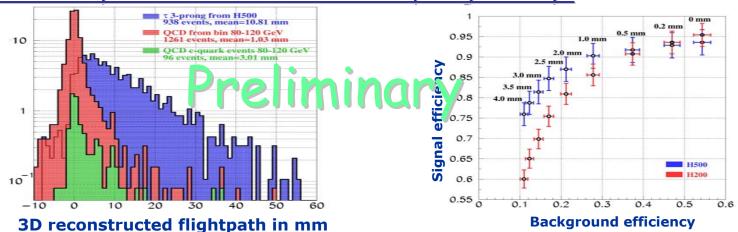
Reconstructed τ mass for 3 prongs and h[±] +n π^0 final states H-> $\tau\tau$ ->2 τ jets, m_H=200 GeV and for QCD jets

2004 LHC Days in Split 5-9 October, 2004, Split, Croatia

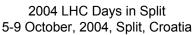
R. Kinnunen Helsinki Institute of Physics


Methods exploiting τ lifetime: cτ ~ 90 μm

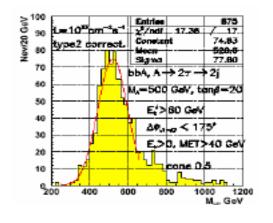
τ's from H->ττ with m_H = 200 GeV travel ~ 5 mm before decaying -> Z -> \mathcal{U} and QCD multijet backgrounds can be suppressed by


τ tagging with impact parameter

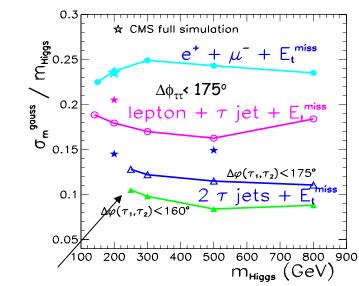
combining impact parameter measurements to $((\sigma_{ip}^{\tau 1})^2 + (\sigma_{ip}^{\tau 2})^2)^{1/2}$ in two τ 's for 1- and 3-prong τ 's


-> QCD di-jet suppression further by ~9 for ~60% signal efficiency

Secondary vertex reconstruction in 3-prong τ decays


Higgs boson mass reconstruction in H,A -> $\tau\tau$

Assume v's emitted in the two τ directions given by the visible decay products (leptons, hadrons), project E_t^{miss} on the two τ directions to give F_t^{miss}


$$m_{H} = (2E_{\tau 1}E_{\tau 2}(1-\cos\theta_{\tau \tau}))^{1/2}$$

 $E_{\tau 1} = E_{jet} + E_{v}$, $E_{\tau 2} = E_{lepton} + E_{v}$

- Resolution and reconstruction efficiency sensitive to Etmiss measurement
- Resolution depends on $\Delta\theta_{\tau\tau}$ as $1/\sin\!\theta_{\tau\tau}$

Mass reconstruction in H-> $\tau\tau$ -> 2 τ jets:

Resolution for $m_H = 500 \ GeV$: $\sigma / \langle m_H \rangle \sim 15\%$ with $\Delta \phi_{\tau\tau} \langle 175^\circ$

Best resolution obtained with fully hadronic τ final states

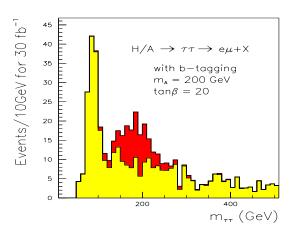
Recoiling jet

Discovery potential for H/A -> ττ

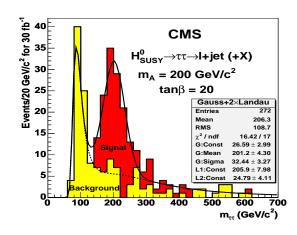
Background suppression with

lepton isolation in $e\mu$ and $\ell\ell$ final states: bb background

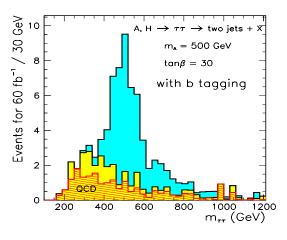
hadronic τ identification, lepton+jet and 2-jet final states: QCD multi-jets, W+jets

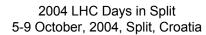

b-jet tagging: Z-> $\tau\tau$, QCD multi-jets, W+jets

 τ tagging with impact parameter: Z-> $\ell\ell$, QCD multi-jets


central jet veto: tt and Wt backgrounds

Signal superimposed on the total background in

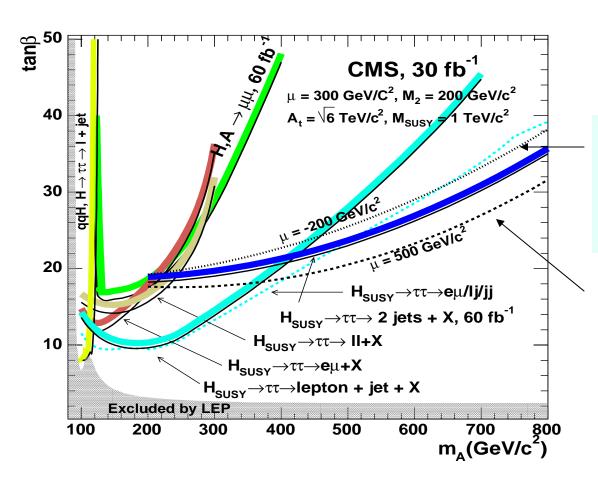

$e-\mu$ final state $30fb^{-1}$


lepton+jet final state 30 fb-1

two-jet final state 60 fb-1

Helicity correlations in H,A -> $\tau\tau$ -> 2 τ jets

a possibility to suppress further Z,γ^* background?


Two possible spin configurations:

Expectation:

$$\begin{aligned} & \text{H(A)} \rightarrow \tau\tau \text{:} \quad \Delta E(\tau_1) \text{ large and } \Delta E(\tau_2) \text{ small} \\ & \text{Z} \rightarrow \tau\tau \text{:} \quad \Delta E(\tau_1) \text{ and } \Delta E(\tau_2) \text{ small or } \Delta E(\tau_1) \text{ and } \Delta E(\tau_2) \text{ large} \\ & \text{where } \Delta E(\tau) = E_{\pi\,\pm} - \Sigma E_{\pi 0} \end{aligned}$$

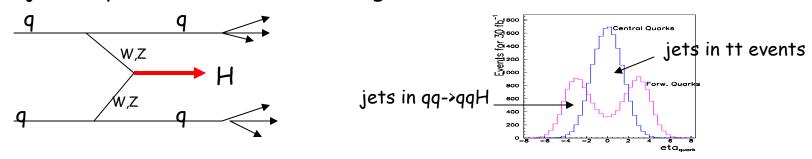
5σ discovery potential for the heavy neutral MSSM Higgs bosons

Reach sensitive to SUSY parameters (μ and M_2) at large m_A :

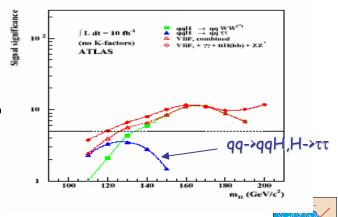
Reduction of the H-> $\tau\tau$ branching fraction for smaller μ and M_2

-> enhancement of $H,A \rightarrow \chi \chi$ due to lighter gauginos

Enhancement of the H-> $\tau\tau$ branching fraction for larger μ and M₂


-> reduction of $H,A \rightarrow \chi \chi$ due to heavier gauginos

H production in weak gauge boson fusion

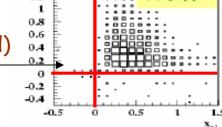

Production characteristics:

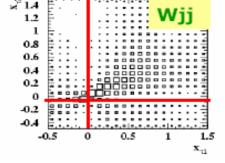
- the final state q-jets from qq->qqH are energetic and distributed in the forward regions
- no jets expected in the central region

Forward jet tagging and central jet veto can be used to suppress the QCD multi-jet, W+jet, Z+jet, γ +jet and tt backgrounds

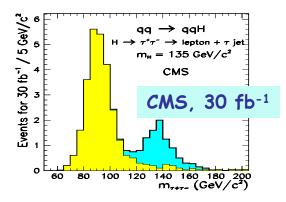
qq -> qqH important for the SM Higgs boson searches with H->WW,WW*, $\gamma\gamma$, $\tau\tau$ decay modes, in particular in the region of small (<120 GeV) and large (>500 GeV) m_H

$H \rightarrow \tau\tau \rightarrow 2$ leptons, lepton + τ jet in weak boson fusion

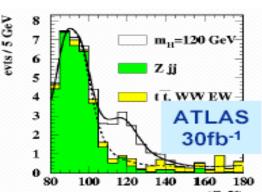

Backgrounds from Z+jets, W+jets, tt,WW suppressed with forward jet tagging and central jet veto The electro-weak qq->qqZ/W background is irreducible but initially smaller then the QCD induced ones


Higgs boson mass can be reconstructed from visible τ 's (jets and leptons) and

1.2

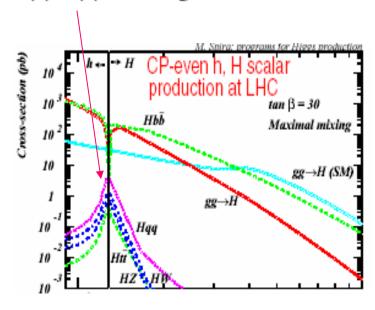

E_tmiss with collinear neutrino approximation

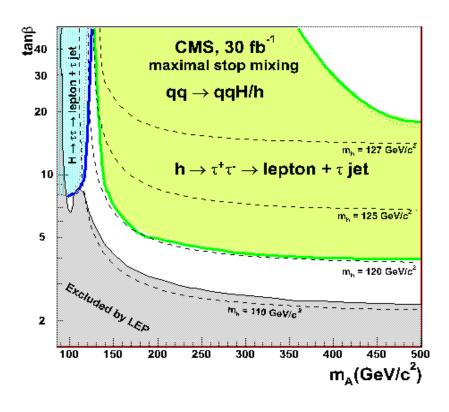
Further background suppression with $x_{\tau} = p(\tau \text{ decay products})/p(\tau \text{ reconstructed})$ $x_{\tau 1}x_{\tau 1} > 0$


lepton+ τ jet final state

R. Kinnunen Helsinki Institute of Physics

Integrated luminosity $\sim 40 \text{ fb}^{-1}$ needed for a 5σ -significance around m_H = 125 GeV in SM


leptonic final state

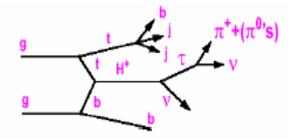


$qq \rightarrow qqH/h$, $H/h \rightarrow \tau\tau$ in MSSM

qq->qqH/h significant near the lower (upper) mass bound of H/h

In this region, H/h is SM-like -> discovery region calculated from the SM sensitivity

Large coverage in MSSM with $qq \rightarrow qqh$, $h\rightarrow \tau\tau$ already with 30 fb⁻¹!

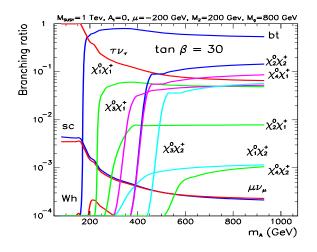


Charged MSSM Higgs bosons

Production:

```
- in tt events with t -> bH^{\pm} if m_{H+} < m_{top}

- through gg \rightarrow tbH^{\pm} if m_{H+} > m_{top}
```

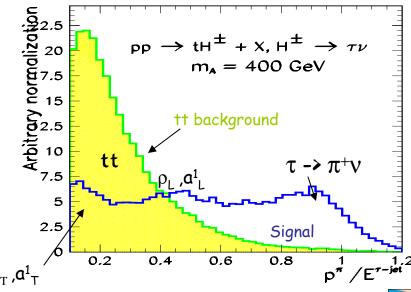


For $m_{H+} > m_{top}$ no need to detect the associated b (at large rapidities) -> $gb \rightarrow tH^{\pm}$ can be used

Decay channels

```
m_{H+} > m_{top}: BR(H± -> \tau v) ~100% m_{H+} > m_{top} and large tan\beta (>10): H± -> tb dominates BR(H± -> \tau v) sizeable ~10%
```

Advantage with $H^{\pm} \rightarrow \tau \nu$, $\tau \rightarrow$ hadrons+ ν : Helicity correlations can be exploited to suppress irreducible backgrounds from tt, Wt and W+jets with W-> $\tau \nu$



Helicity correlations in H⁺ -> τv and W⁺ -> τv

Harder pions from H⁺ -> $\tau^+\nu$ than from W⁺ -> $\tau^+\nu$ (through τ -> $\pi^+\nu$ and the longidutinal components of ρ and a_1)

Suppression of backgrounds with genuine τ 's from W-> τ V with a cut in $p^{\pi}/E^{\tau jet}$

Efficiency with p^{π}/E^{τ} jet > 0.8: Signal, $m_{H\pm}$ = 400 ~45% tt background ~2% (fast simulation)

$$H^{\pm} \rightarrow \tau \nu, \tau \rightarrow hadrons + \nu for m_{H^{+}} < m_{top}$$

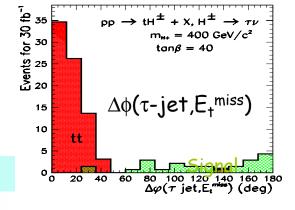
in the events with $t_{1} \rightarrow bH^{\pm}, t_{2} \rightarrow lepton + qq$

Background from tt, Wt, W+jets

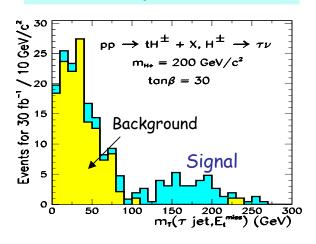
Background suppression with $p^{\pi}/E^{\tau \ jet}$ cut, lepton isolation, b-tagging, top mass reconstruction H± mass reconstruction not possible, signal as an excess of τ 's in tt events

 H^{\pm} -> τν, τ-> hadrons+ν for $m_{H^{+}}$ > m_{top} in fully hadronic events from gg->tbH $^{\pm}$

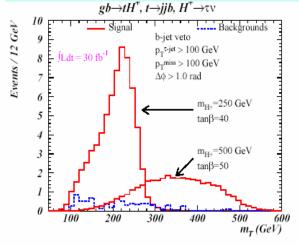
Background from tt, Wt, W+jets

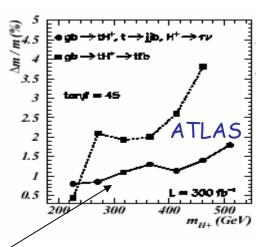

Background suppression with p^{π}/E^{τ} jet cut, E_t^{miss} cut, b-tagging, hadronic top mass reconstruction, central jet veto

 E_t^{miss} (mainly) from $H^{\pm} \rightarrow \tau v$: transverse mass $m_T(\tau-jet, E_t^{miss})$ can be reconstructed with an endpoint at $m_{H^{\pm}}$

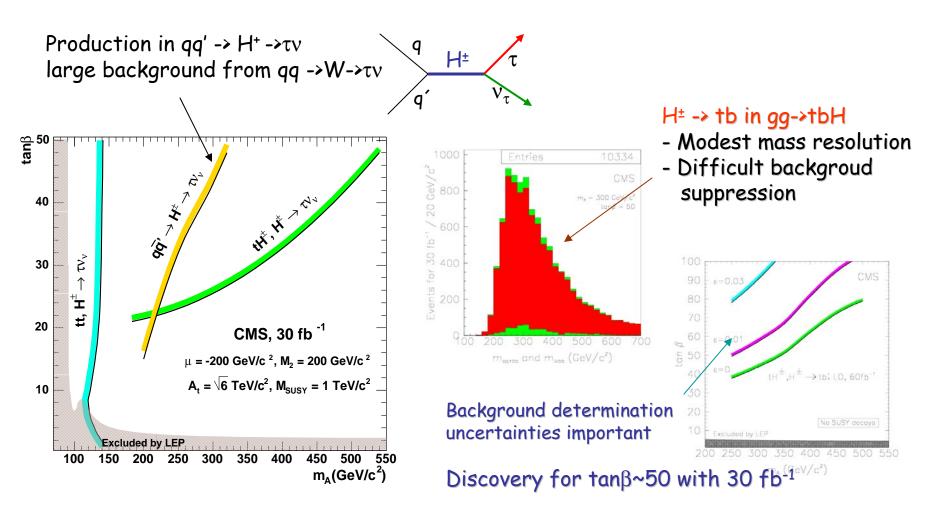


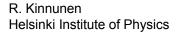
Transverse mass reconstruction in tH±, H± -> τν

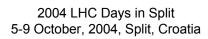

Quasi two-body decay between the τ jet and E_{t}^{miss} in fully hadronic events -> almost background-free situation in $m_{T}(\tau-jet,E_{t}^{miss})$



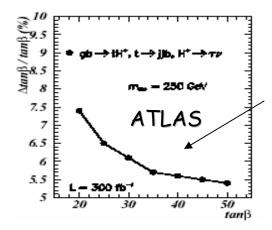
ATLAS, $\Delta \phi(\tau - \text{jet}, E_{t}^{\text{miss}}) > 57^{\circ}$

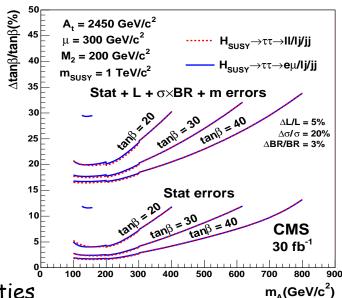





Precision of m_{H+} measurement from $m_T(\tau\text{-jet}, E_t^{miss})$ with likelihood fits: $\Delta m_{H+}/m_{H+} \sim 1$ - 1.5%

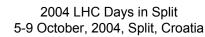
Discovery potential for charged Higgs bosons


Measurement of tan β in $H \rightarrow \tau\tau$ from event rates


At large $tan\beta \sigma_H \sim tan^2\beta_{eff} \times f(m_A)$, BR($\tau\tau$) ~constant

$$\Delta \tan \beta / \tan \beta = \frac{1}{2} * ((N_S + N_B)^{1/2} / N_S + \Delta \tan \beta_{syst})$$

$\Delta tan \beta_{syst}$ consists of:


- Theoretical (scale) uncertainty about 20% for $\sigma(gg \rightarrow bbH)$ with NLO calculations
- Luminosity uncertainty $\Delta L/L \sim 5\%$
- Uncertainty of mass measurement, preliminary estimate 5%
- Uncertainty on event selections ~ 3%

Theoretical uncertainties not includes

Event rates (branching fraction) sensitive to SUSY parameters, uncertainty due to parameter measurement not yet included

Conclusions

The main discovery potential for the heavy MSSM Higgs bosons H and A is through the H/A -> $\tau\tau$ decay modes, with ℓ , ℓ -jet and 2-jet final states, in the gg->bbH/A production at large $\tan\beta$

The most probable discovery mode for the charged Higgs bosons is the $H^{\pm} \rightarrow \tau \nu$ decay in the tt events for $m_{H\pm} < m_{top}$ and in the $gg \rightarrow tbH^{\pm}$ production for $m_{H\pm} > m_{top}$.

Advantages with τ 's:

- Leptonic and hadronic (including 3-prongs) decay modes can be used
- τ lifetime can be exploited in H/A -> $\tau\tau$ with impact parameter or flightpath measurements
- $-\tau$ mass tagging may be used
- Helicity correlations in $H^+ \rightarrow \tau \nu$ (and in $H/A \rightarrow \tau \tau$?) can be used to suppress backgrounds from W->\tau\tau\ (and Z->\tau\tau\)?) decays

Conclusions (cont.)

Requirements for efficient use of τ 's in the search of MSSM Higgs bosons:

- Triggering hadronic τ decays on lowest possible thresholds is advantageous
- Identification of τ 's is (largerly) based on isolation: high reconstruction efficiencies needed for tracks in jets, i.e. tracker performance is essential
- Good vertex and impact parameter measurement precisions for τ tagging
- E_tmiss measurement precision important for mass (m_T) reconstructions

