Simulating the ALICE DAQ/trigger/HLT

DAYSIIN SPLET 20

Boskovic Lostitute

LHC days 2004 Split

CE DAQ/Trg/HLT simulation cic@cern.ch 1.HC dave 200

tome.anti

A problem has to happen...

- Of course ALICE will loose most of interesting (Electron –EL, and Muon -MU) events.
- But, need to be able to quantify this before start to successfully design DAQ/Trigger/HLT to recover the EL and MU events

ALICE DAQ/Trigger/HLT (What is simulated)

ALICE detector readout electronics model

SEB- single event buffer
MEB-multi event buffer
DL-transmission delay

	read	LO			L1					L2				
	out time	MEB			SEB		MEB			SEB		MEB		
		In	Out	SZ	In	Out	In	Out	SZ	In	Out	In	Out	SZ
Pixel	0.01						.01	.1	4	.01	256	.01	E/D	10
Drift	4.0	0	172	1									1600	4
Strips	0.01	0	153.6	1			.01	154	2					
ТРС	88						2.5	E/D	8					
TRD	3.55	.01	33.5				0	2*10 ⁴ *E	300					
TOF	0.01	.1	3	16			0	60	16					
PHOS	2.0						.01	.1	4					
HMPID	0.01	0	4.8	1			0.01	8.2	4001					
MUON	0.01	0	0	1	0	32	0	.1	1	0		0	.1	8
CPV	1.5						.01	.1	4					
PMD	2.0						.01	.1	4					

ALICE DAQ/Trigger/HLT (What is simulated)

Detector parameters/Pb-Pb event sizes

Detector	DDL	RORC	LDC	high	low	High MU	Low MU	High EL	Low EL
Pixel	10	10	10	0.24	0	0.14	0.14	0.24	0.14
Drift	72	36	9	1.50	0			1.50	1.50
Strips	8	4	4	0.22	0			0.22	0.22
TPC	216	216	216	75.90	0			6.33	4.5
TRD	18	18	18	8.00	0			0.27	0.27
TOF	20	10	3	0.18	0				
PHOS	4	4	1	0.02	0	0.02	0.02	0.02	0.02
HMPID	20	10	3	0.12	0				
MUON	28	14	5	0.15	0	0.15	0.15	0.15	0.15
CPV	20	10	3	0.12	0				
PMD	6	3	3	0.12	0	0.12	0.12	0.12	0.03

Results: As expected, we have a problem

Simulation shows a huge reduction of the original rare decays (Electron-EL and Muon-MU) due to various backpressures, caused by central-CE semicentral –SC, and peripheral-PE blocking the event buffers in detectors

The proposed solution

 High/low level at LDC to inform the Trigger to block "non important" high bandwidth triggers (CE, SC, PE) to prevent multi-event buffer getting full

At high level any LDC buffer for any detector blocks CE,SC,PE

CE,SC,PE restarted when **all** LDCs fall below **low level**

Downscaling (when a fraction of a trigger type is outright rejected) is designed in the Trigger, so can use

L1 CE/SO

- use to prevent excessive CE, SC, PE fraction during on times
- cannot on its own solve problem as extremely sensitive (simulation showed!) on exact running conditions

? Will this mechanism work?

? If so, will it require new hardware, or will a software solution work?

Pb-Pb results

LDC high/low control, downscaling by 0.2 of PE,SC and CE events

Pb-Pb results with different running conditions

- Very high percentage of max rate (i.e. only P/F considerations: n/N = e^{-2*P/F*Rate)}) accepted for both electron and muon events for all reasonable running/physics conditions
 - No backpressure rate limitation, detectors not busy
- Further study showed delays for LDC high/low feedback of several 100 msec do not degrade behavior
 - software solution allowed

LHC days 2004 Split

E DAQ/Trg/HLT simulation

Pb-Pb - 1 PE P/F violation

- 60 % of events are Peripheral
 - Assume can analyze events with up to one peripheral event, i.e. they do not enter P/F consideration

• Electron rates significantly increase, but not near max rate: higher rates cause the detectors to be busy

Conclusions

- Have a useful tool to investigate ALICE DAQ/Trigger/HLT behavior
- It enabled to conclude that:
 - Pb-Pb with LDC high/low rate control and downscaling accepts EL and MU events at close to maximally possible rates(at our conditions)
 - P/F domination only
 - When 1 Peripheral event allowed to violate P/F, rates significantly increased, but detector properties do not permit limit to be only P/F considerations
- Can test how detector improvements/degradation influences rates
- But there might be more...

Simulation of HLT, cont....

Downscaling sensitivity (no LDC high/low control)

- scan downscaling factors from below saturation to above saturation
 - max MUON rate about 1000 Hz (changed from before 700 Hz, on request from lhcc committee) at creation
 - max EL rate about 800 Hz at creation
- DAQ/trigger conditions such that downscaling of ~0.1 (i.e. factor 10) of CE,SC, PE events results in system to just about plateau

Max EL and MU rates, bandwidth under maximum(1.25 GB/sec)

19

Max EL and MU rates, bandwidth under maximum(1.25 GB/sec)

20

Max EL and MU rates, bandwidth just under maximum(1.25 GB/sec)

EL and MU rates start to decrease, bandwidth at maximum(1.25 GB/sec)

EL and MU rates decrease, bandwidth at maximum(1.25 GB/sec)

EL and MU rates decrease more than for 0.11, bandwidth at maximum(1.25 GB/s

EL and MU rates significantly decrease, bandwidth at maximum(1.25 GB/sec)

Rate dominated by combination of P/F and L0-L1 time

For MU at $P/F=7 \mu$ sec, rate close to max assuming only P/F, since L0-L1 time < P/F time 5.5<7)

Mode to collect maximum amount of MB p-p events

Rate completely controlled by the Ambra chip readout performance

Why simulate?

conditions: 1000s of elements separately involved in DAQ

different event types require different detector sets read out and different P/F protection

- numerous alternate designs involved: online compression, region of interest readout, L3 decisions ...
- 1000s of separate events processed in parallel at same time

Not obvious at all that it is possible to achieve the physics requirements!

Create a simulation of the DAQ to test the throughput rates for all alternate designs and conditions

Foresight initially used to define specification

Due to slowness of execution (days/simulated second) switched to **Ptolemy**