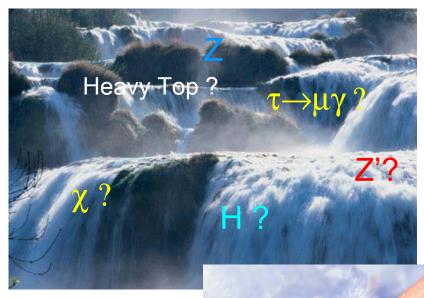
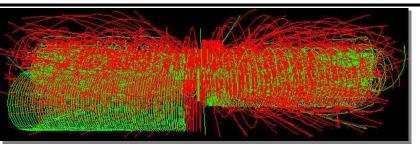


The CMS High Level Trigger System

Vuko Brigljević Institut Ruđer Bošković

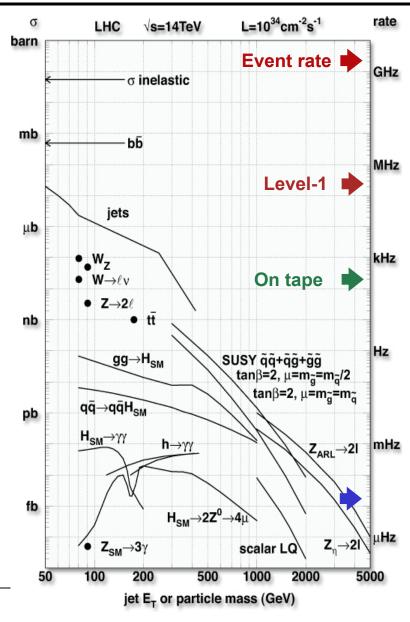

LHC Days in Split 5-9 October 2004

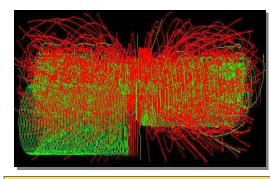


HLT: why should even theorists care?

Plitvice Lakes National Park

A lot of physics will pour out of pp collisions at the LHC!


may be even your preferred new physics signal; yes, but...


... will it be in the tiny fraction that we will keep?

Physics selectivity at LHC

Operating conditions: Higgs in 4 muons + ~20 minimum bias

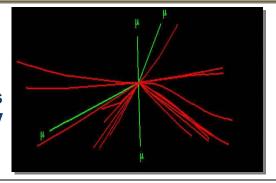
All charged tracks with pt > 2 GeV

Event Rates: ~109 Hz

Event size: ~1 MByte

Level-1 Output

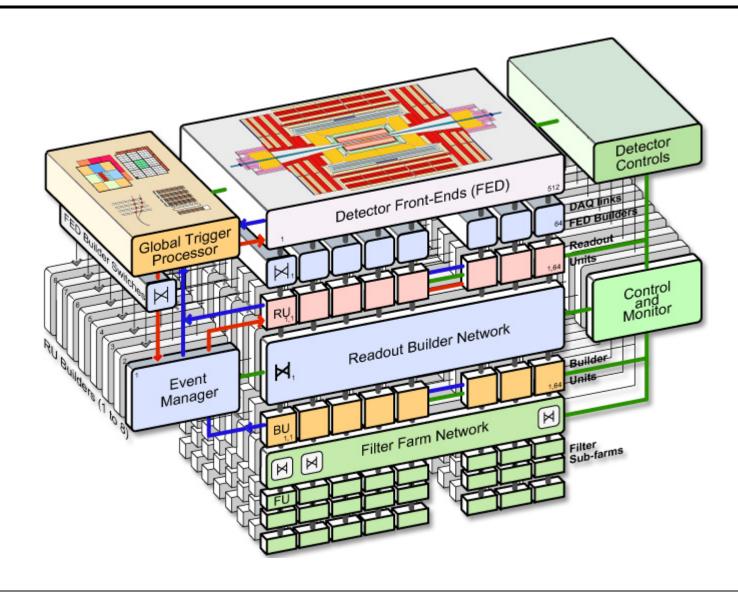
Mass storage


Event Selection:

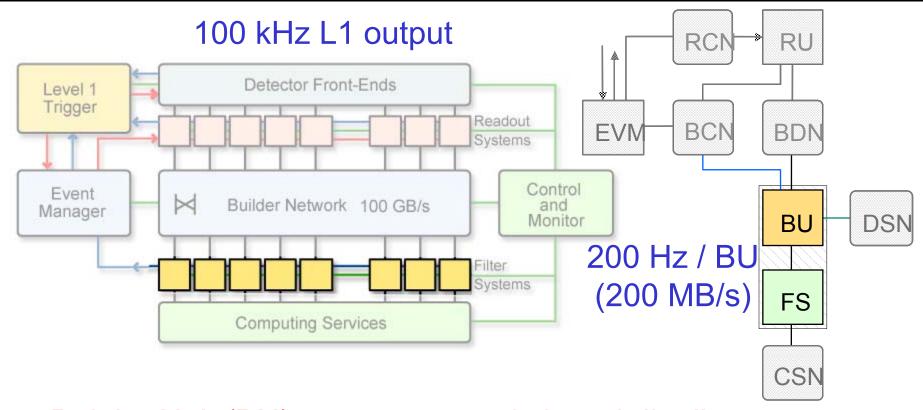
100 kHz

10² Hz

~1/10¹³


Reconstructed tracks with pt > 25 GeV

HLT in CMS: the grand picture



The HLT in the CMS DAQ

- Builder Unit (BU) connects to switch and distributes fully built events to a collection of Filter Units (FU)
- The FU's run the HLT algorithms and ask for data on a need basis

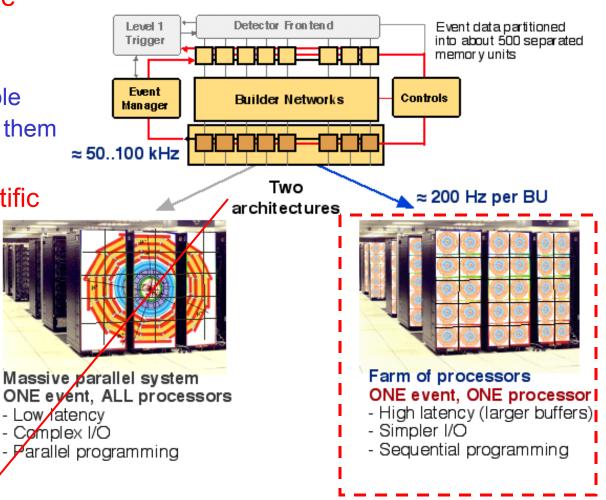
HLT requirements and operation

Boundary conditions:

- Code runs in a single processor, which analyzes one event at a time
- HLT (or Level-3) has access to full event data
- Only limitations:
 - CPU time: guarantee deadtimeless operation at nominal L1 output rate
 - Output selection rate (~10² Hz)

Main requirements:

- Satisfy physics program: high efficiency
- Selection must be inclusive (to discover the unpredicted as well)
- Allow complete freedom of HLT algorithms
- Must not require precise knowledge of calibration/run conditions
- All algorithms/processors must be monitored closely


CPU for the HLT: Filter FARM

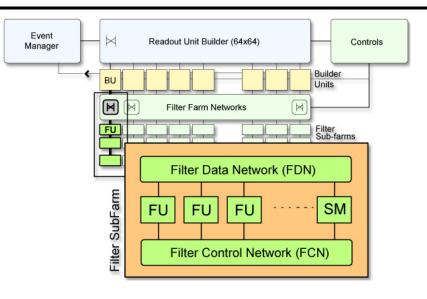
- Final stage of the filtering process: almost an offlinequality reconstruction & selection
 - Need real programmable processors; and lots of them

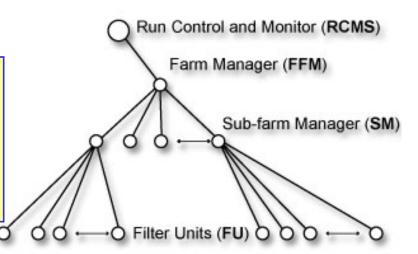
PC+Linux: the new supercomputer for scientific applications

- CMS full DAQ system:
 - ~ 2'000 dual CPU PCs
 - = 4'000 Filter Units
 - $= \sim 40 \text{ ms} / \text{event}$

Managing complexity: Divide et impera

ra E BOSEO


Filter Farm divided in subfarms controlled by a Subfarm Manager headnode


- Facilitates installation staging
- Isolates problems
- Allows DAQ subpartitions

■ Test of different SW version

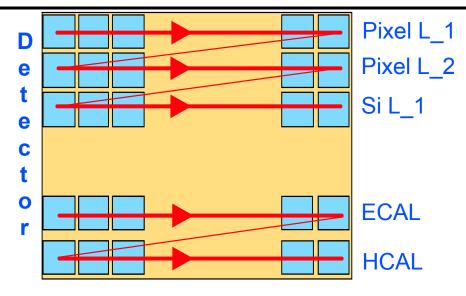
Communication protocols:

- Data (BU-FU): low level TCP
- Control & Monitoring: http, SOAP, XML

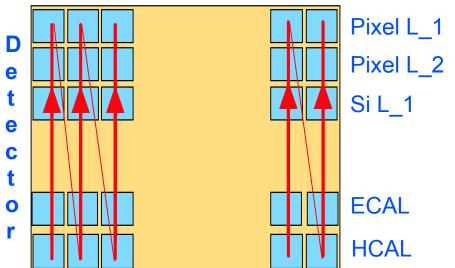
HLT Algorithms

- Strategy/design guidelines
 - ◆ Use offline software as much as possible (only specific I/O)
 - Ease of maintenance, but also understanding of the detector
 - Make use of large developer community
 - But tight quality requirements
- Flexibility & freedom to change Trigger table
- Reconstruct ALL and ONLY what is needed to decide quickly:
 - Unpack only needed raw data (also reduces BU output)
 - Regional reconstruction
 - ◆ Intelligent steering of algorithm sequence: use L1 input

All of this is made possible thanks to the


"Reconstruction on demand"

Design built in the CMS Reconstruction software


HLT (regional) reconstruction (I)

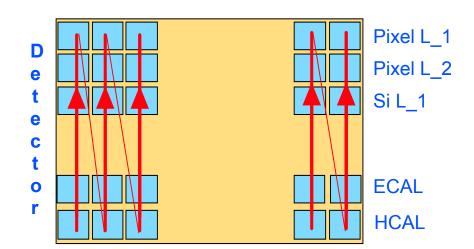
Global

- process (e.g. DIGI to RHITs) each detector fully
- then link detectors
- then make physics objects

Regional

- process (e.g. DIGI to RHITs) each detector on a "need" basis
- link detectors as one goes along
- physics objects: same

HLT (regional) reconstruction (II)



For this to work:

 Need to know where to start reconstruction (seed)

For this to be useful:

- Slices must be narrow
- Slices must be few

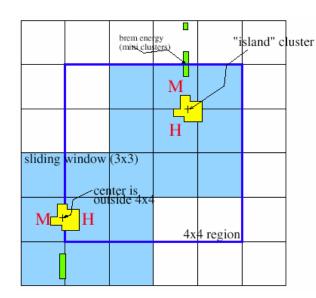
Seeds from LvI-1:

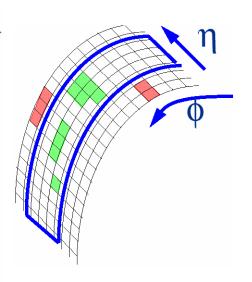
e/γ triggers: ECAL

μ triggers: μ sys

◆ Jet triggers: E/H-CAL

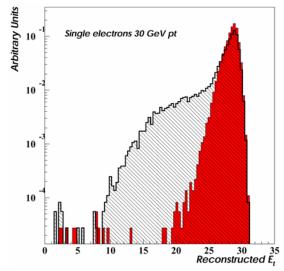
Seeds ≈ absent:


- Other side of lepton
- Global tracking
- ◆ Global objects (Sum E_T, Missing E_T)



Example: electron selection (I)

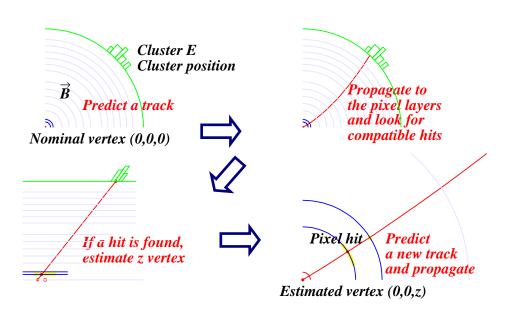
- "Level-2" electron:
 - ◆ 1-tower margin around 4x4 area found by Lvl-1 trigger
 - Apply "clustering"
 - ◆ Accept clusters if H/EM < 0.05
 - ◆ Select highest E_T cluster

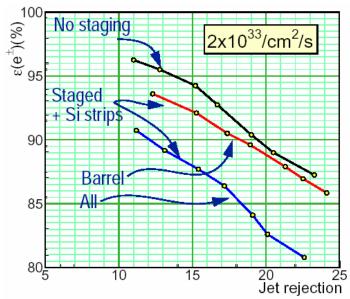


- Brem recovery:
 - ◆ Seed cluster with E_T>E_T^{min}

 - Collect all clusters in road
 - → "supercluster"

and add all energy in road:

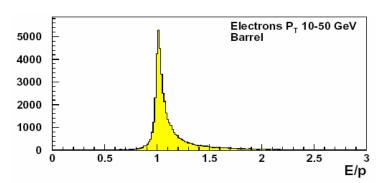


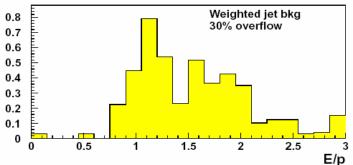


Example: electron selection (II)

- "Level-2.5" selection: add pixel information
 - Very fast, high rejection (e.g. factor 14), high efficiency (ε=95%)
 - Pre-bremsstrahlung
 - If # of potential hits is 3, then demanding ≥ 2 hits quite efficient

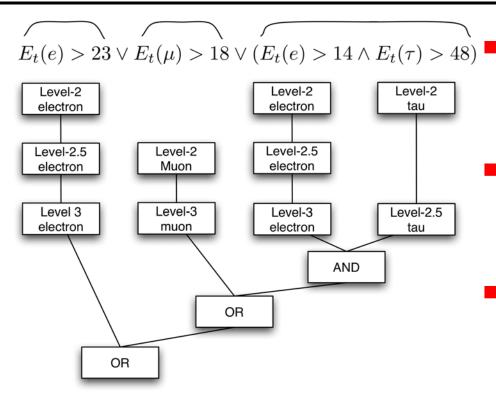
No staging: 3 cylinders + 2 disks Staged: 2 cylinders + 1 disk




Example: electron selection (III)

"Level-3" selection

- Full tracking, loose trackfinding (to maintain high efficiency):
- Cut on E/p everywhere, plus
 - Matching in η (barrel)
 - H/E (endcap)
- Optional handle (used for photons): isolation



	Signal	Background	Total
Single e	W → eν: 10 Hz	π^{\pm}/π^0 overlap: 5 Hz π^0 conversions: 10 Hz b/c $ ightarrow$ e: 8 Hz	33 Hz
Double e	Z → ee: 1 Hz	~0	1 Hz
Single γ	2 Hz	3 Hz	5 Hz
Double γ	~0	5 Hz	5 Hz
			44 Hz

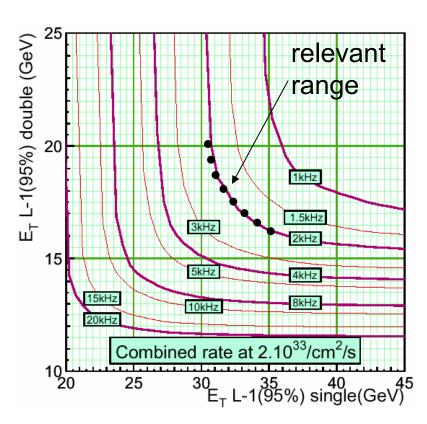
HLT Steering

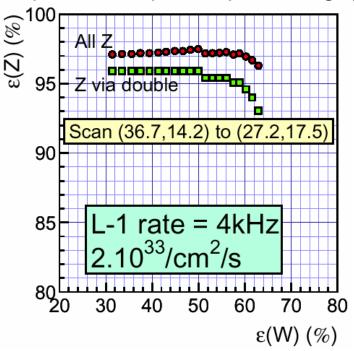
HLT table can be dynamically loaded / modified during running (XML Document)

- HLT Trigger table is equivalent to a logical decision tree
- Evaluation sequence optimized to minimize computation time
- Allow Veto mode: HL subtriggers computed only if corresponding L1 accept on
- Mean rejection time dominates the computation time

Physics Plan and Trigger Table (as of DAQ TDR)

Trigger table determination (I)


- Startup configuration: don't need 100 kHz on day 1
 - Machine conditions non-optimal
 - Funds for completion of DAQ will be present later
 - Exploit technological developments buy ALAP
- Startup setup:
 - ◆ Physics startup assumptions: 2x10³³cm⁻²s⁻¹, and a DAQ with 4 RU builders, i.e. 50 kHz throughput
- Starting point: 50kHz/3 →16kHz to allocate
 - Factor 3 is safety: accounts for all processes that have not been simulated, uncertainties in generator/simulation and beam conditions
 - This factor varies across experiments
 - Initial step: equal allocation across (1&2e/γ), (1&2μ), (1&2τ) and jets/cross channels (e&τ, μ*jet, etc)
 - Get thresholds, efficiencies; look at physics cost; iterate


Trigger table determination (II)

- Deciding LvI-1 cuts: $1e/\gamma$ vs $2e/\gamma$, 1μ vs 2μ , 1τ vs 2τ
 - Create iso-rate plot (contours of "equal cost")
 - ◆ For each contour (in relevant range, e.g. 2kHz, 3kHz, 4kHz) get efficiency of physics channel in 1-obj vs 2-obj requirement

(and of course: operate at point of rapid slope change)

Level-1 trigger table (low lumi)

Total Rate: 50 kHz. Factor 3 safety, allocate 16 kHz

Trigger	Threshold	Indiv.	Cumul rate
	(ε=90-95%) (GeV)	Rate (kHz)	(kHz)
1e/γ, 2e/γ	29, 17	4.3	4.3
1μ, 2μ	14, 3	3.6	7.9
1τ, 2τ	86, 59	3.2	10.9
1-jet	177	1.0	11.4
3-jets, 4-jets	86, 70	2.0	12.5
Jet * Miss-E _T	88 * 46	2.3	14.3
e * jet	21 * 45	0.8	15.1
Min-bias		0.9	16.0

HLT table (low luminosity)

Total Rate: 105 Hz

Trigger	Threshold (ε=90-95%) (GeV)	Indiv. Rate (Hz)	Cumul rate (Hz)
1e, 2e	29, 17	34	34
1γ, 2γ	80, (40*25)	9	43
1μ, 2μ	19, 7	29	72
1τ, 2τ	86, 59	4	76
Jet * Miss-E _T	180 * 123	5	81
1-jet, 3-jet, 4-jet	657, 247, 113	9	89
e * jet	19 * 52	1	90
Inclusive b-jets	237	5	95
Calibration/other		10	105

HLT table

Issues to "fight"

- Purity of streams is not the same (e.g. electrons vs muons)
- Overlap (kinematically) is necessary; but also: redundancy
 - Question most asked in large analysis meetings, when a problem is under investigation in W->ev: do we see this in the muons?
- But, above all, comparison of unlike things:
 - How much more bandwith should go to lower-P_T muons than to electrons?
 - How should one share the bandwidth between jet*missE_T and di-electrons?
- Only guidance in the end of the day is efficiency to all the known channels
 - While keeping the selection INCLUSIVE
 - For this is online. Events rejected are lost forever.

HLT performance

With previous selection cuts

Channel	Efficiency	
	(for fiducial objects)	
H(115 GeV)→γγ	77%	
H(160 GeV) \rightarrow WW* \rightarrow 2 μ	92%	
$H \rightarrow ZZ \rightarrow 4\mu$	92%	
A/H(200 GeV)→2τ	45%	
SUSY (~0.5 TeV sparticles)	~60%	
With R _P -violation	~20%	
W→ev	67% (fid: 60%)	
$W\rightarrow \mu \nu$	69% (fid: 50%)	
Top→μ X	72%	

HLT: CPU usage

All numbers for a 1 GHz, Intel Pentium-III CPU

Trigger	CPU (ms)	Rate (kHz)	Total (s)
1e/γ, 2e/γ	160	4.3	688
1μ, 2μ	710	3.6	2556
1τ, 2τ	130	3.0	390
Jets, Jet * Miss-E _T	50	3.4	170
e * jet	165	0.8	132
B-jets	300	0.5	150

- Total: 4092 s for 15.1 kHz → 271 ms/event
 - Therefore, a 100 kHz system requires 1.2x10⁶ SI95
- Expect improvements, additions. Time completely dominated by muons (GEANE extrapolation) – will improve
- ◆ This is "current best estimate", with ~50% uncertainty.

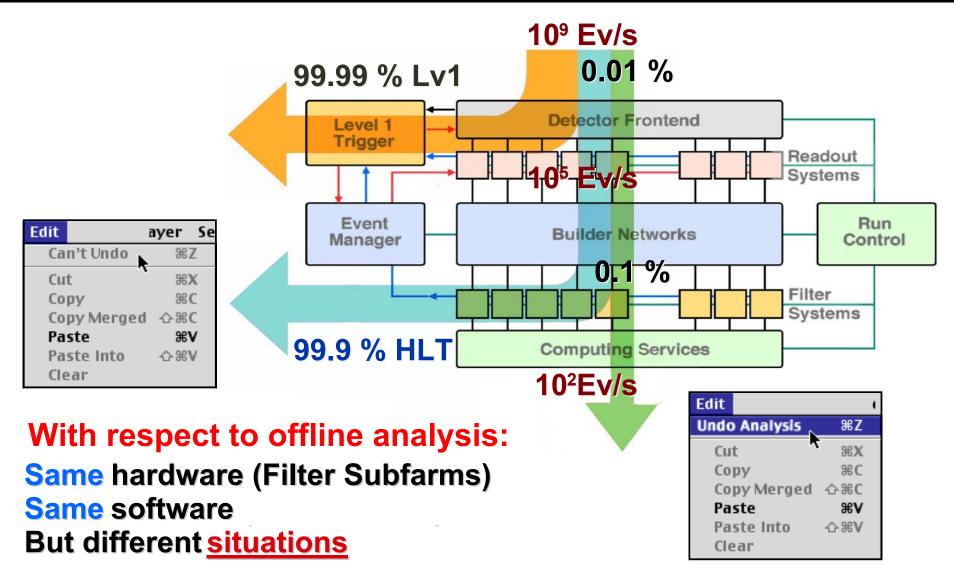
CPU Usage

- Today: need ~300 ms on a 1GHz Pentium-III CPU
 - ◆ For 50 kHz, need 15,000 CPUs
 - ◆ Moore's Law: 2x2x2 times less time (fewer CPUs) in 2007
 - Central estimate: 40 ms in 2007, i.e. 2,000 CPUs
 - Thus, basic estimate of 1,000 dual-CPU boxes in TDR
 - (Note: not an excess of CPU, e.g. no raw-data handling)
 - Start-up system of 50kHz (Level-1) and 105 Hz (HLT) can satisfy basic "discovery menu"
 - Some Standard Model physics left out; intend to do it, at lower luminosity and pre-scales as luminosity drops through fill
 - Examples: inclusion of B physics (can be done with high efficiency and low CPU cost; limitation is Level-1 bandwidth); details in TDR. Also low-mass dijet resonances.
- Single-farm design works.

FAQ

- What happens if we turn on and we only need 42kHz (i.e. safety factor is <3)?</p>
 - We lower thresholds, add triggers, etc to use full bandwidth available
- What happens if we turn on and we need 70 kHz?
 - ◆ The Level-1 trigger is programmable, it can, e.g. mask hot regions, etc etc. Requirement is to stay within 50 kHz.
 - Must look carefully at beam-gas etc
- Can we add triggers?
 - ◆ All tables: just indications of type of combinations and requirements we can have on "day-1". (Actually at a lumi of 2x10³³cm⁻²s⁻¹)
 - Much will depend on the Tevatron, on when we turn on, on actual beam conditions, on actual event size, on actual DAQ system...

Summary


- CMS HLT implemented on a farm of PCs
 - Farm design scales with CPU needs
 - Running offline quality selection code
 - As for DAQ, we have a working design, the specific implementation will follow needs & technology
- HLT framework allows flexible and efficient algorithm implementation
- DAQ TDR shows alpha version HLT trigger table
 - Certainly not the final thing, will be moving target anyway
 - Will follow input from HERA, Tevatron, theory,...

My question to the offline community: Why not more than 100 Hz?

A parting thought

So make sure it ends up in there!

