

p-p collisions at LHC

Operating conditions: Higgs in 4 muons + ~20 minimum bias

All charged tracks with pt > 2 GeV

Event Rates: ~109 Hz

Event size:

~1 MByte

Level-1 Output
Mass storage
Event Selection:

100 kHz 10² Hz ~1/10¹³

Reconstructed tracks with pt > 25 GeV

Requirements and design parameters

Detectors

Total weight: 12,500 t Overall length: 21.6 m
Overall diameter: 15 m Magnetic field: 4 Tesla

Detector Channels Control Ev. Data

Pixel	60000000	1 GB	50 (kB)
Tracker	10000000	1 GB	650
Preshower	145000	10 MB	5 0
ECAL	85000	10 MB	100
HCAL	14000	100 kB	5 0
Muon DT	200000	10 MB	10
Muon RPC	200000	10 MB	5
Muon CSC	400000	10 MB	90
Trigger		1 GB	16

Event size

Max LV1 Trigger

Online rejection

System dead time

1 Mbyte 100 kHz 99.999%

LHC trigger and DAQ summary

ATLAS	No.Levels Trigger	First Level Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	Archive MB/s (Event/s)
CMS	3	10 ⁵ 210 ³	10 ⁶	10	100 (10 ²)
	2	10 ⁵	10 ⁶	100	100 (10 ²)
LHCb		10 ⁶ 4 10 ⁴	2×10 ⁵	4	40 (2x10 ²)
PHOS TIC ASSOSEE MECHEPIUM MICHIBEL	-	500 10 ³	5x10 ⁷ 2x10 ⁶	5	1250 (10 ²) 200 (10 ²)

Trigger and data acquisition trends

CMS DAQ structure: 2 physical triggers

40 MHz

Clock driven Custom processors

Level-1 Trigger Custom design

100 kHz Event driven PC network

High-Level Trigger Industry products

Level-1 output / HLT input 100 kHz
Network bandwidth 1 Terabit/s
HLT output 10² Hz

Invest in data transportation and CPU

Evolution of DAQ technologies and structures

1970-80: Minicomputers

Readout custom design First standard: CAMAC

kByte/s

1980-90: Microprocessors

HEP standards (Fastbus) Embedded CPU, Industry standards (VME)

MByte/s

2000-xx: Networks

IT commodities, PC, Clusters Internet, Web, etc.

GByte/s

DAQ baseline structure

Collision rate 40 MHz No. of In-Out units 512

Level-1 Maximum trigger rate 100 kHz Readout network bandwidth ≈ 1 Terabit/s

Average event size ≈ 1 Mbyte Event filter computing power ≈ 10⁶ SI95

Event Flow Control ≈ 10⁶ Mssg/s Data production ≈ Tbyte/day

No. of PC motherboards ≈ Thousands

Two trigger levels

Level-1: Specialized processors 40 MHz synchronous

- -Particle identification:
- -high pT electron, muon, jets, missing ET
- Local pattern recognition and energy evaluation on prompt macro-granular information from calorimeter and muon detectors

99.99 % rejected 0.01 Accepted

High trigger levels: CPU farms 100 kHz asynchronous farms

- Clean particle signature
- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching
- Event reconstruction and analysis

100-1000 Hz. Mass storage Reconstruction and analysis.

99.9 % rejected 0.1 Accepted

Level-1. Particle identification

Level-1 trigger systems

Trigger based on tracks in external muon detectors that point to interaction region

- Low-p_↑ muon tracks don't point to vertex
 - Multiple scattering
 - Magnetic deflection
- Two detector layers
 - Coincidence in "road"

ISOLATED ELECTRON

- Pattern catalog
- Fast logic

Detectors:

DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p. value

High Level Trigger: Event Filter farm

Massive parallel system
ONE event, ALL processors

- Low latency
- Complex I/O
- Parallel programming

Farm of processors ONE event, ONE processor

- High latency (larger buffers)
- Simpler I/O
- Sequential programming

Technology trends

Readout and computing IO structures

1990' PCI

IO and Processing systems : Commercial PCs
Operating systems : Unix(Linux),
Interfaces standards : PC IO systems (e.g. PCI)

Desktop/Server current architecture Peripheral IO bus PCI: 33/66 MHz x 32/64 bit 100/200/400 MB/s

200X: PCI-X ...

2002 PC mother boards:

- 2 GHz dual processors
- 4 PCI-X ports at 1GB/s
- 3 GB/s memory bandwidth
- Suitable for all DAQ readout applications

Building the event (EVB)

Event builder:

Physical system interconnecting data sources with data destinations. It has to move each event data fragments into a same destination

512 Data sources for 1 Mbyte events ~1000s HTL processing nodes

EVB and switch technologies

Myricom Myrinet 2000

• NIC: M3S-PCI64B-2 (LANai9)

Custom Firmware

Implementation:

16x16 port X-bar capable of channeling data between any two ports.

transport with flow control at all stages

Gigabit Ethernet

• Switch: Foundry FastIron 64 x 1.2 Gb/s port

NIC: Alteon (running standard firmware)

Implementation:

Multi-port memory system of R/W access bandwidth greater than the sum of all port speeds

Packet switching

Contention resolved by Output buffer. Packets can be lost.

Infiniband • 2.5 Gb/s demo product. Tests ongoing with a small 2x2 setup

150

100

50

0

32x32 Myrinet EVB protocols results

Random traffic

8x8: single stage:

max. utilization: ≈ 50%

32x32: two stage network

max. utilization $\approx 30\%$

Barrel shifter

- Fixed size event fragments below 4k: Fragment < BS carrier above 4k: Fragment > BS carrier
- Throughput at 234 MB/s = 94% of link Bandwidth

-link (2 Gbps)

EVB - fixed size

BS@NIC

100000

10000

32x32 GbE EVB protocols results

EVB demonstrators summary

	Myrinet 2000	GbE raw packet	GbE TCP/IP
Test bench	32x32	32x32	32x32
Port speed	2.5 Gbit/s	1.2 Gbit/s	1.2 Gbit/s
Random traffic	30-50%	50%, <mark>92%</mark> (*)	30%, <mark>60%</mark> (*)
Barrel switch	94%	-	-
CPU load	Low	High	High
1 Tbit/s EVB	512x512	1024x1024	2048x2048
No. switches	8 128-Clos	16 256-port	32 256-port

(*) with fragment sizes larger than 16kB

2 stages: Data to surface & Readout Builder

Builders protocols (e.g. Myrinet)

DAQ staging: 1 to 8 RBs = 100 kHz

I) Data to surface (D2S)

Decision must be taken in 2004. Installation in 2005

II) Readout Builders (RB)

D2S one. Decision will be taken later in 2006

8-fold DAQ 3-D design

On-line software: framework and subsystems

Online software architecture:

- Cross-platform DAQ framework: XDAQ
- Data acquisition components
- Run Control and Monitor System (RCMS)
- Detector Control System (DCS)

The RCMS, DCS and data acquisition components interoperate through a distributed processing environment called XDAQ (cross-platform DAQ framework)

S. Cittolin CMS/PH-CMD

Configuration, operation and monitoring

XDAQ:on-line framework and DAQ components:

• Services and tools for local and remote inter-process communication, configuration and control and data storage Components to build data acquisition systems (RU,BU,EVM,..) (C++, JAVA, I2O, http, XML,

RCMS: Run Control and Monitoring System Based on open protocols, web

Based on open protocols, web services and emerging e-tools tools (JAVA, http, XML, MySQL,)

DCS: Detector Control Systems

Based on industry supported hardware and software (PLC, field buses, PVSS and JCOP tools)

DAQ raw schedule

2004 P5 green barrack: Pre-series RB

- -32 GII-FED emulators
- -64 FRLs
- -13 Water cooled racks
- -93 PC dual-CPU
- -D2S Myrinet equipment
- -Readout Builder Myrinet
- -16 PC Filter Farm

Preseries integration programme

DAQ data flow and computing model

Summary design principles

Invest in the advance of communication and processing technologies

Computing (100 kHz Readout, HLT by PC farms)
Communication (Terabit/s networks, GB/s memories)

- Maximally scaling architecture
Exploit technology evolution
Cost optimization via staged installation

Modular system (simpler controls, error handling, smaller basic units)

Rely on hardware and software industry standards
 Custom/standards (PCI, Ethernet, C++, JAVA, http, XML,..)

Conclusions

The CMS design fulfils the major requirements:

- √100 KHz level-1 readout
- **✓ Event builder:**
 - a scalable structure that can go up to 1 Terabit/s
- √ High-Level Trigger by fully programmable processors
- •This design should be considered complete, but not final.
 e.g. switches procured in 2008-09 can be different from those of the startup system
- •It is a **system** that is **expected to change** with time, accelerator and experiment conditions. And it has been designed to do so
- •It is conceived to provide the **maximum possible flexibility** to execute a physics selection on-line