NLO PQCD prediction for

 exclusive two-photon annihilation into pseudoscalar meson pair$$
\gamma \gamma \rightarrow M^{+} M^{-}(M=\pi, K)
$$

Goran Duplančić
Ruđer Bošković Institute, Zagreb, Croatia
gorand@thphys.irb.hr

$$
\gamma \gamma \rightarrow M^{+} M^{-}(M=\pi, K)
$$

Motivation:

- exclusive processes - challenging tests of QCD
- photon induced reactions - clean test of pQCD
- NLO - LO do not have much predictive power

Formalism:

- 1980 - Brodsky and Lepage, Efremov and Radyushkin, Duncan and Mueller

Situation:

- LO - many exclusive processes
- NLO - 3 processes

Complete list of NLO calculations:

- pion electromagnetic form factor ($\pi^{+(-)}+\gamma^{*} \rightarrow \pi^{+(-)}$)

Field at al. (1981); Dittes and Radyushkin (1981); Sarmadi(1982); Radyushkin and Khalmuradov (1985); Braaten and Tse (1987);
complete NLO prediction: Melić, Nižić and Passek $(1999,2000)$

- pion transition form factor ($\gamma^{*} \gamma \rightarrow \pi^{0}$)
del Aguila and Chase (1981); Brateen (1983); Kadantseva et al. (1986);
BLM scale (NNLO): Melić, Nižić and Passek (2001)
- two photon annihilation into meson pair ($\gamma \gamma \rightarrow M^{+} M^{-}$)

Nižić (1987) - simplified meson distribution amplitude: $\Phi_{M} \sim \delta(x-1 / 2)$

-.---.-.--- Asymptotic (as)
-------- Chernyak-Zhitnitsky (CZ)
Bakulev, Mikhailov, Stefanis (BMS)

Profiles of pion DAs normalized at $\mu_{0}^{2}=1 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& \mathcal{M}^{(0)}\left(\lambda \lambda^{\prime} ; s, Z\right)=\int_{0}^{1} d x \int_{0}^{1} d y \Phi_{M}^{*}(x, \tilde{s}) \Phi_{M}^{*}(y, \tilde{s}) T_{H}^{(0)}\left(\lambda \lambda^{\prime} ; s, Z ; x, y, \tilde{s}\right) \\
& \left.\begin{array}{c}
T_{H}^{(0)}(++; s, Z ; x, y, \tilde{s}) \\
T_{H}^{(0)}(--; s, Z ; x, y, \tilde{s})
\end{array}\right\}=(4 \pi)^{2} \alpha_{e} \alpha_{S}\left(s_{R}\right) C_{F} \frac{8\left(e_{1}-e_{2}\right)^{2}}{s\left(1-Z^{2}\right)} \frac{x y+\bar{x} \bar{y}}{x y \bar{x} \bar{y}}, \\
& \left.\begin{array}{c}
T_{H}^{(0)}(+-; s, Z ; x, y, \tilde{s}) \\
T_{H}^{(0)}(-+; s, Z ; x, y, \tilde{s})
\end{array}\right\}=(4 \pi)^{2} \alpha_{e} \alpha_{S}\left(s_{R}\right) C_{F} \frac{8}{s x y \bar{x} \bar{y}}\left[(1-x y-\bar{x} \bar{y}) \frac{\left(e_{1}-e_{2}\right)^{2}}{\left(1-Z^{2}\right)}\right. \\
& \left.+e_{1} e_{2} \frac{(x y+\bar{x} \bar{y})(x \bar{y}+x \bar{y})}{(x y+\bar{x} \bar{y})^{2}-Z^{2}(x y-\bar{x} \bar{y})^{2}}+\left(e_{1}^{2}-e_{2}^{2}\right) \frac{(x-y)}{2}\right] \\
& Z=\cos \theta_{c . m .}, \quad \bar{x}=1-x, \quad \bar{y}=1-y,
\end{aligned}
$$

Brodsky and Lepage (Phys.Rev.D 24, 1808 (1981))
Essential parts of the hard scattering amplitudes are accidentally proportional to the pion form factor

$$
\begin{aligned}
\frac{d \sigma}{d Z}\left(\gamma \gamma \rightarrow M^{+} M^{-}\right) & \sim \frac{4\left|F_{M}(s)\right|^{2}}{1-Z^{4}} \frac{d \sigma}{d Z}\left(\gamma \gamma \rightarrow \mu^{+} \mu^{-}\right) \\
F_{\pi}(s) & \sim 0.4 \mathrm{GeV}^{2} / s
\end{aligned}
$$

Comes
为

m<
Moscc
~meq or

 mos m<

 SOSO
NLO $=422$ diagrams (they can be
generated from 58 basic diagrams)
... a few years later:
$\sigma\left(\left|\cos \theta_{c . m .}\right|<0.6\right)=f_{M}^{4} \frac{1.035}{s^{3}} \alpha_{S}^{2}\left(s_{R}\right)\left\{1+\frac{\alpha_{S}\left(s_{R}\right)}{\pi}\left[-3.828+\frac{\beta_{0}}{2}\left(3.563+\ln \left(\frac{s_{R}}{s}\right)\right)\right]\right\}$

Physical scales:

-BLM - mean virtuality of gluon propagator $s_{R, B L M} \simeq s / 35$

- α_{V} scheme - QCD coupling is defined from the heavy quark potential. Renormalization scale is by definition the momentum transfer caused by the gluon. $s_{R, V} \simeq s / 7$

	$\overline{M S}, s_{R}=s$		$\overline{M S}, s_{R, B L M}=s / 35$		$\alpha_{V}, s_{R, V}=s / 7$	
$s\left(\mathrm{GeV}^{2}\right)$	$\alpha_{S}\left(s_{R}\right)$	$\mathrm{NLO} / \mathrm{LO}$	$\alpha_{S}\left(s_{R, B L M}\right)$	NLO/LO	$\alpha_{S}\left(s_{R, V}\right)$	NLO/LO
4	0.303	1.178	1.33	-1.607	0.45	1.066
10	0.253	0.982	0.71	-0.858	0.347	0.823
100	0.178	0.693	0.327	-0.395	0.221	0.523
1000	0.138	0.536	0.212	-0.257	0.162	0.384

Measurements:

J. Dominick et al. [CLEO Collaboration], "Two photon production of charged pion and kaon pairs," Phys. Rev. D 50 (1994) 3027 [arXiv:hepph/9403379].
A. Heister et al. [ALEPH Collaboration], "Exclusive production of pion and kaon meson pairs in two photon collisions at LEP," Phys. Lett. B 569 (2003) 140.
K. Grzelak, [DELPHI Collaboration], "Exclusive production of charged kaon and pion pairs in photon photon collisions at LEP-2," Prepared for International Conference on the Structure and Interactions of the Photon and 14 th International Workshop on Photon-Photon Collisions (Photon 2001), Ascona, Switzerland, 2-7 Sep 2001

Conclusion:

- hard scattering picture is way below the experiment
- experiment is way below the hard scattering picture

