

2004 LHC DAYS IN SPLIT Diocletian's Palace/Palazzo Milesi, Split, Croatia 5 - 9 October 2004

Physics with the CMS Tracker

Lucia Silvestris INFN-Bari

Selectivity: The Physics

Cross-sections of physics processes vary over many orders of magnitude:

- inelastic: 10⁹ Hz
- b b production: 10⁶-10⁷ Hz
- $W \rightarrow /\nu$: 10² Hz
- tt production: 10 Hz
- Higgs (100 GeV/c²): 0.1 Hz
- Higgs (600 GeV/c²): 10⁻² Hz

Tracker plays an essential role on:

- Triggering
- particle identification μ and e,
- b and τ tagging
- Jet reconstruction (Energy Flow)
- Missing E_T

2004 LHC Days in Split

Physics with the CMS Tracker

CMS Tracker Strategy

INFN

HLT Secondary Vertices Reconstruction

Exclusive Vertices

Secondary vertex resolution using Kalman Filter

	H ⁰ (130)->4 μ	B _s →μμ	$B_s \rightarrow J/\psi \phi$
σ (x) μm	12.12 ± 0.13	47.5 ± 3.63	55.3 ±0.95
σ(z) μm	19.18 ± 0.23	71.5 ± 1.3	72.7 ±1.4
CPU time msec	2.5	1.9	3

- LvI-1: $2\mu P_T > 3GeV, \epsilon = 15.2\%$
- HLT strategy:
 - Select pixel seeds with $P_T > 4$ GeV in η - ϕ region around trigger μ 's
 - Conditional tracking:
 - stop if p_t<4 GeV/c @ 5σ or N_{hit}=6 or σ(p_t)/p_t<0.02
 - B_s reconstruction if only 2 track candidates with opposite charge in ± 150 MeV window
 - Vertex: $\chi^2 <$ 20 and $d_{r\varphi}$ > 150 μm

Aver Old offline analysis (hep-ph/9907256 Jul 1999) predicts:
14 evts ± 2 bkg @ 90 C.L. with 20fb⁻¹ (1 year @ 2x10³³ cm⁻²s⁻¹)
5σ observation with 40fb⁻¹ and feasibility @ high lumi too
But L1 is in |η| < 2.4 + slightly different kinematics cut
Update foreseen for the CMS Physics TDR

2004 LHC Days in Split

- The seed for tracks reconstruction is created around the LVL1 jet direction
- Primary vertex is calculated
- Tracks are reconstructed in a cone of $\Delta R>0.15$ around the jet direction
- Tracks are conditionally reconstructed
- The Jet direction is refined using the reconstructed tracks

Hiaas searches: ttH -> ttbb (M_H < 130 GeV)

- Fully reconstructed final state- expect \boldsymbol{v}
- Required good b tagging and t tagging
 - Trigger: t \rightarrow b(e/ μ)v
 - Reconstruct both t quarks
- Backgrounds
 - Combinatorial from signal
 - Irreducible ttbb (ttjb, ttjj)
- Signal significance (5σ) :
 - $M_H < 120 \text{ GeV}$ needs 100 fb⁻¹
 - $M_H < 130 \text{ GeV}$ needs 300 fb⁻¹
- More studies on going in preparation for Physics TDR.

Physics Program: MSSM Higgs A,H

Production predominantly via gluon fusion and bbH

Associated bbH,A production enhanced by $\mbox{tg}^2\beta$ in the MSSM wrt SM

Heavy SUSY Higgs

INFN

di Fisica Nucleare Sezione di Bai

2004 LHC Days in Split

B and τ tagging play a key role

Physics with the CMS Tracker

Trigger a τ Jet at HLT using Tracker

Regional Tracking: Look only in Jet-track matching cone Loose Primary Vertex association

Conditional Tracking: Stop track as soon as Pixel seed found (PXL) / 6 hits found (Trk) If Pt<1 GeV with high C.L.

Reject event if no "leading track" found

Regional Tracking: Look only inside Isolation cone Loose Primary Vertex association

Conditional Tracking: Stop track as soon as Pixel seed found (PXL) / 6 hits found (Trk) If Pt<1 GeV with high C.L.

Reject event as soon as additional track found

 A^0/H^0 ->2 τ ->2 τ jets

2004 LHC Days in Split

19

By adding a few Tracker hits, can measure track momentum: Cut on leading track Pt (>6,7 GeV) allows to reduce isolation cone size => higher signal efficiency and less sensitivity to pile-up

	Luminosity	Configuration/Trigger	M _H = 200 GeV/c ² N	1 _H = 500 GeV/c ²	QCL
	2×1033cm-2s-1	Staged pixels, Track Tau	0.355±0.006	0.375±0.005	(8.6±1.6)×10-4
.ow L	2×10 ³³ cm ⁻² s ⁻¹	Full pixels, Track Tau	0.433±0.006	0.489±0.005	(8.3±1.6)×10 ⁻⁴
	2×10 ³³ cm ⁻² s ⁻¹	Full pixels, Calo+Track Tau	0.446±0.00 <mark>0.47</mark>	0.486±0.005	$(1.0\pm0.2) \times 10^{-3}$
ligh L	10 ³⁴ cm ⁻² s ⁻¹	Track Tau	$0.346 {\pm} 0.006$	$0.420 {\pm} 0.005$	(1.13±0.4)×10 ⁻³
-	10 ³⁴ cm ⁻² s ⁻¹	Calo + Track Tau	0.361±0.00 <mark>0.40</mark>	0.427±0.005	(9.4±3.0)×10 ⁻⁴

Trk tau fast enough at low luminosity for full L1 rate

At high luminosity currently need a moderate Calo pre-selection factor to reduce time

Main search channel for heavy MSSM Higgs, three final states studied:

Main backgrounds from $Z/\gamma^* \rightarrow \tau\tau$, tt, QCD for 2-jets final state.

Selection based on:

- b-tagging (this analysis ε_b ~40%, purity ~94%)
- E_Tmiss
- identified leptons (e, μ)
- tracks with high impact parameter
- τ jet tagging: low multiplicity narrow jets with hard tracks isolated in calorimeters and in tracker

2004 LHC Days in Split

Physics with the CMS Tracker

Summary

CMS Tracker Detectors expected to play an essential role to address the full range of physics which can plausibly be accessed at the LHC.

- Standard Model Physics, like B Physics, Top Physics
- SM Higgs Searches, MSSM Higgs Searches, SUSY Searches

CMS Tracker designed to cope the LHC Physics

- Pixel detector allows fast & efficient track seed generation, as well as excellent 3-D secondary vertex identification
- Pixel and μ -strip sensors, together with the analyzing power of the CMS 4T magnet allow for a ~ 2% or better resolution for 100GeV muons over about 1.7 units of rapidity
- Pixel and μ -strip sensors used in HLT and Offline Studies for e, μ , identification, b and τ tagging, Energy Flow.....

Physics of the LHC will be extremely rich

... just get it running!

Backup slides

 ^{-}N

Low Luminosit	ty L1 Trigger T	<u>able (Prototy</u>	pe)	
<u>Trigger type</u>	<u>Threshold</u> (ε= 95%) (Ge V)	<u>Indiv.</u> <u>Rate (kHz)</u>	<u>Cumul</u> <u>rate</u> <u>(kHz)</u>	
1e/y, 2e/y	29, 17	4.6	4.3	
1 μ, 2 μ	14, 3	3.6	7.9	
1τ, 2τ	86, 59	3.2	10.9	
1-jet,3-jets, 4- jets	177,86,70	3.0	12.5	
Jet * Miss E_{T}	88 * 46	2.3	14.3	
e * jet	21 * 45	0.8	15.1	
Min-bias		0.9	16.0	

Hardwared processors (Asic,FPGA) Using only calorimeters and Muon data

Designed to cover the widest possible range of physics for discovery

Total L1 allocated rate-50 KHz x 1/3 safety factor

- > B Physics selection triggered @ L1 by single or di-muon triggers
- > Particles from B decays have relatively soft spectrum
- > Important keeping the L1 threshold as low as possible
- > Muons are preferred to electron because of the lower trigger threshold

For lower pt tracks multiple scattering becomes significant and the η dependence reflects the amount of material traversed by tracks and the lever arm effect

$\textbf{B}_{\textbf{S}} \rightarrow \textbf{J/} \psi \phi \rightarrow \mu \mu ~\textbf{KK}$

Old CMS analysis (CERN-2000-004) not updated yet

Angular distribution analysis Expected number of signal evts ~600K (yield with 30fb⁻¹)

Trigger was NOT optimized

	$\Delta \Gamma_s$	φ _s (x _s =20)	$\phi_s(x_s=40)$
Value	0.15×Г _s	0.04	0.04
Error	8.0%	0.014	0.03

~300K 40fb⁻¹

$\sigma(\Delta\Gamma_s)/\Delta\Gamma_s$	~ 12%
$\delta \phi_s(x_s=20) \sim$	0.02 rad
$\delta \phi_s(x_s=40) \sim$	0.04 rad

2004 LHC Days in Split