
EGEE is a project funded by the European Union under contract IST-2003-508833

WSDL

JAX-RPC

17th October 2004

www.eu-egee.org

WSDL, 17th October 2004 - 2

JAX-RPC API packages

• javax.xml.rpc Core classes for the client side programming model

• javax.xml.rpc.encoding Java primatives <-> XML SOAP messages

• javax.xml.rpc.handler processing XML messages
• javax.xml.rpc.handler.soap

• javax.xml.rpc.holders support the use of IO parameters

• javax.xml.rpc.server minimal API for web service inplementation

• Javax.xml.rpc.soap specific SOAP bindings

WSDL, 17th October 2004 - 3

JAX-RPC Architecture

WSDL, 17th October 2004 - 4

Java web service flow

WSDL, 17th October 2004 - 5

Client operation modes

• JAX-RPC allows two modes of operation
Synchronous request – response
One-way RPC

• Synchronous
This involves blocking the client until it receives a response
Is similar to a traditional java method call

• One – way
No client blocking
Service performs a operation without replying.
Not analogous to traditional method calls

WSDL, 17th October 2004 - 6

Comparing One-way and traditional
methods

• A traditional java method call like
Public void request (int arg1, int arg2);

Does not return a value to the caller

However if it appeared in a web service interface definition it would
be mapped to a synchronous request – response RPC

This is because it indicates that an exception may still need to be
thrown to the client.

A one – way RPC cannot throw an exception.

WSDL, 17th October 2004 - 7

Synchronous method invocation

Client Servlet

Client invokes service

Response returned to client

Client waits until
Server responds Server performs the

requested action

WSDL, 17th October 2004 - 8

One – way RPC invocation

Client Servlet

Client invokes service

Server performs the
requested actionClient does not block

While operation is performed

WSDL, 17th October 2004 - 9

Defining a service

• A service can be defined starting with:
A java interface

A WSDL document

• Which to use?
If the service end point interface is defined in java it may not be
interoperable with services/clients defined in other languages

If the service is initially defined in WSDL it will be open

WSDL, 17th October 2004 - 10

Using JAX-RPC to create a service
from a Java interface

WSDL, 17th October 2004 - 11

Binding Parameters and Return Values
with JAX-RPC

WSDL, 17th October 2004 - 12

Interface method definitions

• The interface must extend java.rmi.remote

• Interface methods must declare that it throws
java.rmi.RemoteException

• Service dependent exceptions can be thrown if they are checked
exceptions derived from java.lang.Exception

• Method name-overloading is permitted

• Service endpoint interfaces may be extensions of other interfaces

A java web service end point interface must obey the following rules:

WSDL, 17th October 2004 - 13

Supported data types

• Java primitives (eg. bool, int, float, etc)
• Primitive wrappers (Boolean, Interger, Float, etc)
• Standard java classes (required - java.lang.String,

java.util.Calendar,
java.util.Date,
java.math.BigDecimal,
java.math.BigInterger)

• Value types
• Holder classes
• Arrays (where all elements are supported types)

Object by reference is not supported

WSDL, 17th October 2004 - 14

Value Types

• Class has a public no-argument constructor

• May be extended from any other class, may have static and
instance methods, may implement any interface (except
java.rmi.Remote and any derived)

• May have static fields, instance fields that are public,
protected, package private or private but these must be
supported types.

WSDL, 17th October 2004 - 15

Warning about comparing classes

• The values returned by service methods are in fact local
classes created by JAX-RPC from the XML serialisation

• This means that comparisons using == should be avoided

• equals () should be used instead

• (inner static classes will not compare correctly)

WSDL, 17th October 2004 - 16

Serializer

• If you want to pass an un-supported java class you have to
create your own serializer/deserializer to translate to and
from XML.

• This not a trivial task as there is no JAX-RPC framework.

WSDL, 17th October 2004 - 17

Client side Implementation

WSDL, 17th October 2004 - 18

wscompile

• Generates
Compiled class files + optionally source files for stubs to interface
with client side JAX-RPC

WSDL file

Model file

Example commandline

wscompile –gen:client –d output/client –classpath classpath config-file

(add –keep –s to retain java source files)

WSDL, 17th October 2004 - 19

config.xml

<?xml version=“1.0” encoding=“UTF-8” ?>
<configuration xmlns=“http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<service name=“……..”
targetNamespace=“………………………”
typeNamespace=“……………………………..”
packageName=“……………………………….”>

<interface name=“……………………………”/>
</service>

</configuration>

name = name of service
targetNamespace = namespace of WSDL for names associated with the

service eg. port type
typeNamespace = namespace of WSDL for data types
packageName = name of java package

WSDL, 17th October 2004 - 20

Generated files

Some of the client side generated files:

method.java

Interface_Stub.javaInterface

Info_SOAPBuilder.java

Info_SOAPSerializer.javaValue type

ServiceException_SOAPBuilder.java

ServiceException_SOAPSerializer.javaException

Service_SerializerRegistry.java

Service_Impl.java

Service.javaService

WSDL, 17th October 2004 - 21

Service.java file

• The Service.java file corresponds to the definition of the
interface for the web service, ie it contains the same info as
the <service> element in the config file.

package servicePackage;

import javax.xml.rpc.*;

Public interface Service extends javax.aml.rpc.Service
{

public servicePackage getServicePort();
}

WSDL, 17th October 2004 - 22

Stub Communication Model

WSDL, 17th October 2004 - 23

Referencing the stub

• In order to get an object to reference the stub you have to
instantiate Service_Impl.

(Unfortunately this name is only recommended)

• Service_Impl service = new Service_Impl ();

• value* name = (value)service.getServicePort
();

• With this reference you can call the methods of the service.

WSDL, 17th October 2004 - 24

Stub Interface (javax.xml.rpc.Stub)

Public interface Stub

{

public abstract Object _getProperty (String name) throws
JAXRPCException;

public abstract Iterator _getPropertyNames ();

public abstract void _setProperty(String name, Object
value) throws JAXRPCException;

}

These methods allow the stub to be configured by setting various properties.

WSDL, 17th October 2004 - 25

Stub configuration

Authentication required for
HTTP

StringUSERNAME_PROPERTY
PASSWORD_PROPERTY

Whether to enter and maintain
session – default false

BoolSESSION_MAINTAIN_PROPERTY

Address of the service to
connect

StringENDPOINT_ADDRESS_PROPERTY

descriptiontypeProperty name

WSDL, 17th October 2004 - 26

Server side Implementation

WSDL, 17th October 2004 - 27

Deploying to a web container

• Create a WAR file
Java class file for service endpoint interface
Java class files for service implementation and resources
web.xml file containing deployment information
Class files for JAX-RPC tie classes

• JAX-RPC tie classes are implementation specific.

WSDL, 17th October 2004 - 28

Deploying with JWSDP - Tomcat

WSDL, 17th October 2004 - 29

Additional WAR files required for
JWSDP

Model file generated by wscompileWEB-INF/model

JWSDP-specific deployment
information

WEB-INF/jaxrpc-ri.xml

Web application deployment
descriptor

WEB-INF/web.xml

WSDL, 17th October 2004 - 30

web.xml file

<?xml version=“1.0” encoding=“UTF-8” ?>

<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>

<web-app>

<display-name>Service Name</display-name>

<description>A web service application</description>

</web-app>

WSDL, 17th October 2004 - 31

Creating a deployable WAR file

wsdeploy –o targetFileName portableWarFileName

The process is informed by the content of the jaxrpc-ri.xml file.

The archive contains:
class files and resources
compiled class files for the ties
compiled class files for serializers
WSDL (in WEB-INF directory)
model file for the service (in WEB-INF)
modified web.xml file
jaxrpc-ri-runtime.xml (based on jaxrpc-ri.xml)

WSDL, 17th October 2004 - 32

Package Structure for JAX-RPC Service
Endpoint

WSDL, 17th October 2004 - 33

Modified web.xml
<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc. //DTD Web Application 2.3//EN”

“http://java.sun.com/j2ee/dtds/web-app_2_3.dtd”>
<web-app>

<display-name> Service name </display-name>
<description>……………………</description>

<listener>
<listener-class>com.sun.xml.rpc.server.http.JAXRPCContextListener
</listener-class>

<listener>
<servlet>

<servlet-name>Servlet</servlet-name>
<display-name>Servlet.</display-name>
<description>………………...</description>
<servlet-class>com.sun.xml.rpc.server.http.JAXRPCServlet</servlet-class>
<load-on-startup>1</load_on_startup>

</servlet>
<servlet-mapping>

<servlet-name>Servlet</servlet-name>
<url-pattern>/Servlet</url-pattern>

</servlet-mapping>
</web-app>

WSDL, 17th October 2004 - 34

jaxrpc-ri.xml file

<?xml version=“1.0” encoding=“UTF-8”?>

<webServices xmlns=“http://java.sun.com/xml/ns/jax-rpc/ri/dd”
version=“1.0”

targetNamespaceBase=“ {WSDL file location} ”

typeNamespaceBase=“ {types} “>

<endpoint name =“Servicename”

displayname=“Servicename Port”

description=“………………..”

model=“/WEB-INF/model”

interface=“ classpath “

implementation=“ classpath “/>

<endpointMapping>

endpointName=“Service”

urlPattern=“ /Service “/>

</webServices

May contain any number of endpoint elements and any number of endpointMapping
The file is private to JAX-RPC and you don’t need to edit it

WSDL, 17th October 2004 - 35

Using JAX-RPC to create a service from
a WSDL definition

WSDL, 17th October 2004 - 36

• WSDL is an interface definition

WSDL, 17th October 2004 - 37

Getting the WSDL

• WSDL can be downloaded from a UDDI registry

• If the service uses JAXRPCServlet you can attach ?WSDL
(or ?model) to the URL request to get the WSDL (or model
file).

Eg http://localhost:8080/Service/Servicename?WSDL

WSDL, 17th October 2004 - 38

A config.xml file

<?xml version=“1.0” encoding=“UTF-8”?>

<configuration xmlns=“http://java.sun.com/xml/ns/jax-
rpc/ri/config”>

<wsdl
location=“http://localhost:8080/Service/Servicename?W
SDL” packageName=“example.wsdlexample.servicename”/>

</configuration>

Format of config file depends on whether wscompile is given a WSDL file,
model file or Java

WSDL, 17th October 2004 - 39

Generate client side artifacts

wscompile –gen:client –keep –s
generated/client –d output/client –classpath
classpath config.xml

WSDL, 17th October 2004 - 40

J2EE 1.4 bug

In some versions of J2EE 1.4 generated WSDL files contain
errors in the <soap:address> definitions tag and have to be
manually edited.

Eg. http://localhost:8080//Service/Servicename

Which would have to be edited to

http://localhost:8080/Service/Servicename

WSDL, 17th October 2004 - 41

Some of the client side files generated
by wscompile from WSDL

Info.javaValue type

ServiceException.javaException

method.java

Interface_Stub.javaInterface

Info_SOAPBuilder.java

Info_SOAPSerializer.java

ServiceException_SOAPBuilder.java

ServiceException_SOAPSerializer.java

Service_SerializerRegistry.java

Service_Impl.java

Service.javaService

WSDL, 17th October 2004 - 42

Stub interface

Service_Impl service = new Service_Impl ();

Object name = (Object)service.getServicePort();
Info[] name = Service.getServiceInfo();

The web service address is preconfigured using information
from the WSDL <soap:address> element within the service’s <port> element
for its portType.

WSDL, 17th October 2004 - 43

J2EE client

• J2EE allows container-resident clients to get references to
Service objects defined in the JNDI environment.

• So code can be vendor independent

• The client has to be packaged in a JAR file to be deployed.

WSDL, 17th October 2004 - 44

JAR application client entry

• To create the entry in the JNDI environment you include a
webservicesclient.xml file in the JAR

• This file resides in the META-INF directory

WSDL, 17th October 2004 - 45

webservicesclient.xml file

<?xml version=“1.0” encoding=“UTF-8”?>

<!DOCTYPE webservicesclient PUBLIC

“-//IBM Corporation, Inc//DTD J2EE Web services client
1.0//EN”

“http://www.ibm.com/standards/xml/webservices/j2ee/j2ee_web
_services_client_1_0.dtd”>

<webservicesclient>

<service-ref>

<description>……………</description>

<service-ref-name>service/Service</service-ref-name>

<service-interface>classpath</service-interface>

<wsdl-file>Filename.wsdl</wsdl-file>

<jaxrpc-mapping-file>META-INF/model</jaxrpc-mapping-
file>

</service-ref>

<webservicesclient>

WSDL, 17th October 2004 - 46

Elements

• <service-ref> defines the reference to the web service

• <service-ref-name> defines where the reference
appears in the JNDI relative to java:comp/env

• <service-interface> fully qualified path to the
generated class

• <wsdl-file> location of WSDL file relative to the root of
the JAR file.

• <jaxrpc-mapping-file> mapping of WSDL definition to
java service endpoint interface

WSDL, 17th October 2004 - 47

Generation

• The information in the webservicesclient.xml file is read by
the deployment tools.

• These generate a class which implements the Service
interface

• They also generate the client side stubs which the
application will call.

WSDL, 17th October 2004 - 48

Obtaining a Service object

InitialContext ctx = new InitialContext ();

Object service = (object)PortableRemoteObject.narrow
(ctx.lookup (“java:comp/env/service/Service”),
object.class);

Object name = (object)service.getServicePort();

((Stub)name)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
args[0]);

WSDL, 17th October 2004 - 49

wscompile

You can use the information in a config.xml file which
specifies a WSDL definition to generate the classes
required for the service:

wscompile –import –f:norpcstructures –d
output/interface config.xml

-f:norpcstructures – avoids generating SOAP
message creation classes.

WSDL, 17th October 2004 - 50

Files required in the JAR

META-INF/mapping.xml or META-
INF/model

META-INF/application-client.xmlDeployment descriptors
Service.wsdlWSDL file
Classpath.client.ServiceAppClientApplication implementation

Classpath.service.Exception
Classpath.service.Info
Classpath.service.nameService end point interface

FilenameFile type

Classpath.service.ServiceService interface

META-INF/MANIFEST.MFManifest file
META-INF/webservicesclient.xml

WSDL, 17th October 2004 - 51

JAR file uses

• Deployment to the server to create stubs

• Source for class files for application client

WSDL, 17th October 2004 - 52

After deployment

• Generated stubs are written to a file called stubs.jar

• The JAR also has a file called sun-j2ee-ri.xml

WSDL, 17th October 2004 - 53

Accessing a Service Using a Dynamic
Proxy

WSDL, 17th October 2004 - 54

DII Call Interface

