ATLAS Detector Description Database

Vakho Tsulaia University of Pittsburgh

> 3D workshop, CERN 14-Dec-2004

- The purpose and logical organization of the ATLAS Detector Description Database (DDDB)
- Physical architecture
- Tools for data access
- Database distribution issues
- Conclusions

- The main purpose of the ATLAS DDDB is to store in one common place all primary numbers for ATLAS subsystem geometries together with the configuration information (tags, switches)
- The primary numbers for ATLAS Detector Description are organized in DDDB into a set of Data Tables
 - Each data table describes some particular piece of ATLAS geometry
 - ~150 Data Tables at the moment
- Data tables are logically grouped into HVS (Hierarchical Versioning System) node tree, where
 - Leaf HVS Nodes correspond to the Data Tables
 - **Branch HVS Nodes** are pure logical entities supposed to group child nodes and build the tree hierarchy

open all close all		ATLAS DD Develop	ment Database	
ATLAS	TRTENDCAPSTRWLAYZPOS DATA ID	LAVERZPOSAWHEELS	LAVERZPOSBWHEELS	LAVERZPOSCWHEELS
🗄 🧾 BeamPipe	1			
E 🔁 InnerDetector	long	lioat	noat	IIOat
🛨 🧮 Pixel	0	4.5	5	4.5
🗄 🛄 SCT	1	12.5	20	12.5
	2	20.5	35	20.5
	3	28.5	50	28.5
		20.5	64	20.5
	4	38.3	04	38.3
TRTECWheelTynDenPars	5	46.5	79	46.5
TRTEndCapOverallPars	6	54.5	94	54.5
E G TRTEndCapStrwLayZPos	7	62.5	109	62.5
TRTEndCapStrwLayZPos-00	8	73.5	0	73.5
E C TRTLegacy	9	81.5	0	81.5
	10	89.5	0	89.5
	11	97.5	0	97.5
🗄 🚞 InDetIdentifier	12	107.5	0	107.5
	13	115.5	0	115.5
TheCal MuonSpectrometer	14	123.5	0	123.5
Cryostats	15	131.5	0	131.5
🗄 🚞 MagneticField				
🗄 🧮 AtlasMother				

ATLAS DD Development Database

- HVS nodes can be tagged
 - Leaf HVS Node Tag consists of a set of corresponding Data Table records
 - Branch HVS Node Tag consists of its children tags
- HVS tags can be locked
 - Tag is locked usually after successful validation of corresponding data records
 - The validation procedure involves the usage of the data by ATLAS detector description applications
- Tag locking means
 - All daughter HVS tags are locked recursively
 - Locked tags cannot be renamed or deleted
 - If a record in some data table corresponds to any locked tag, this record cannot be updated or deleted anymore
- In particular, locking the root ATLAS node tag closes the entire ATLAS geometry version

I close all	long	float	float	float
AS Taos	0	4.5	5	4.5
ATLAS-00	1	12.5	20	12.5
🚞 BeamPipe-00	2	20.5	35	20.5
Cryostats-00	2	20.5	50	20.5
🔁 InnerDetector-00	3	28.5	30	28.5
🗄 🚞 InDetServices-00	4	38.5	64	38.5
🗄 🧰 Pixel-00	5	46.5	79	46.5
⊞ 🛄 SCT-00	6	54.5	94	54.5
E TRT-DC2-00	7	62.5	109	62.5
± TRTBarrel-00	/ 0	72.5	105	102.5
± TRTCommon-00	8	/3.3	0	/3.5
	9	81.5	0	81.5
TRIECWheellypDepPars-00	10	89.5	0	89.5
TRTEndCapStrwl av7Pos-00	11	97.5	0	97.5
± ☐ TRTLegacy-00	12	107.5	0	107.5
TRTSwitches-02	13	115.5	0	115.5
InDetIdentifier-00	14	123.5	0	123.5
LAr-00	15	1215	0	131.5

- Presently there are two Oracle accounts serving the ATLAS DDDB at CERN
 - **Development (DEVDB)**. Is used to enter and validate new data
 - Production (PDB). Starting from recently is default account for the ATLAS Detector Description applications. Contains just a subset of DEDVB account data (locked tags)
- The main reasons for supporting two different accounts are:
 - It is foreseen to <u>replicate DDDB to remote Oracle servers</u> and also <u>transfer its</u> <u>contents to MySQL</u>
 - The strategy for these activities is not yet clear
 - ... so we have to worry about consistency of distributed data
- The present situation with these two accounts is going to be revised in the near future

- We have introduced three user accounts for the ATLAS DDDB (both DEDVB and PDB)
- Administrator account (DEVDB, PDB). The owner of the database with all privileges
- Writer account with SELECT and INSERT privileges
 - **DEVDB**. Is used directly by the ATLAS subsystem responsible users to put new data into database
 - PDB. Should be used by the data publishing tools only to transfer the data corresponding to some locked tag from DEVDB to PDB
- Reader account (DEVDB, PDB). Only SELECT privilege is granted. Is used by the ATLAS Detector Description applications and also by the Web Browser for read-only data access

- Write:
 - Schema modifications (adding new data tables), by database administrators only
 - Filling the contents of data tables through direct usage of very simple SQL scripts
 - Configuration management tasks (node tagging, tag collecting, tag locking etc.) through interactive PHP-based web tool
- Read:
 - Reading of primary numbers by ATHENA-based applications using a dedicated ATHENA service
 - PHP-based web browser
- Data publishing from the development to the production account
 - Using a dedicated utility

We have developed a PHP-based interactive web tool offering various functionalities for HVS node management

Example 1. Leaf HVS node tag collecting

	DUMMYPARAMS_DATA_ID	XPOS	YPOS	DESCRIPTION
COLLECT	long	double	double	string
V	0	11.1	22.2	First record
~	1	33.3	44.4	Second record

Example 2. Branch HVS node tag collecting and locking

Node: InnerDet	ector	
Tag: InnerDetec	ctor-DC1-00	
Pixel	Pixel-DC1-00	UPDATE
SCT	SCT-DC1-00	UPDATE
TRT	TRT-DC1-Final-00	UPDATE
InDetServices	InDetServices-00	UPDATE
InDetIdentifier	InDetIdentifier-02	UPDATE
InDetTestBeam		UPDATE

ag: innerDeteo	ctor-DC1-00 UNLO	CKED
LOCK		
Pixel	Pixel-DC1-00	UNLOCKED
SCT	SCT-DC1-00	UNLOCKED
TRT	TRT-DC1-Final-00	UNLOCKED
InDetServices	InDetServices-00	LOCKED
	InDetIdentifier-02	UNLOCKED
InDetIdentifier		

- Primary numbers and configuration switches in DDDB are presently validated by building geometries of various ATLAS subsystems and using them in Simulation/Reconstruction
- The primary numbers in DDDB are accessed by ATHENA applications through RDBAccessSvc
 - The service was developed based on POOL Relation Access Layer, which provides s common interface to the data in different Relational Database Management Systems (RDBMS)
 - The concrete RDBMS is chosen at run time by loading the appropriate plug-in
- The primary numbers in all DDDB Data Tables are presented to clients of RDBAccessSvc in uniform way through Recordset objects
 - Recordset is a snapshot of data table records corresponding to the given tag
 - The records can be retrieved from Recordset by index or using the iterator
 - The actual primary numbers are retrieved from records by field names

- The main principle: Only the data corresponding to locked tags should be published on the PDB side using the dedicated tool
- We have developed a first version of the data publishing tool based on POOL RAL
 - Transfers locked tags from DEVDB to PDB
 - Uses transactions
 - Still needs some improvements, especially for configurability
 - Using this program we have successfully published two ATLAS tags on PDB
- Any subsequent updates of the PDB database content should not affect the existing data, just new locked tags will be added
- PDB database should be the default storage of DD primary numbers for ATHENA applications, providing just the <u>read-only</u> access

- The Production DB account should be used as a single source for any further replication of DDDB contents to remote Oracle servers and for translation to MySQL
- The strategy and tools for these activities have not been chosen yet.
 We foresee two possible scenarios:
 - 1. Usage of a generic replication tool. (For example: Octopus replicator)
 - Using Octopus we have successfully transferred present contents of PDB account to MySQL and have built ATLAS geometry based on MySQL
 - We need too keep the present situation with two Oracle accounts if Octopus is chosen
 - 2. Usage of a HVS-aware tool. (For example: our data publishing tool)
 - Using this tool we could not make Oracle-to-MySQL transfer because of problems with RAL MySQL plug-in related to data inserts
 - This bug was fixed in the last internal release of POOL so we can try it now
 - If a HVS-aware tool is chosen we can merge two Oracle accounts into one (on PDB)

- The ATLAS Detector Description Database has already become an essential part of ATLAS DD applications, in particular the ATLAS Geometry Versioning System
- DDDB configuration management and publishing tools have already been used quite effectively, they need some further developments though
- We are ready to distribute the database following the distribution strategy which has to be decided by the ATLAS database management team