

ATLAS 3D Requests

LCG3D Kickoff Workshop CERN, Geneva, Swizerland December 13, 2004

Alexandre Vaniachine, Jeff Tseng, Andrea Formica

- ATLAS Database Project and LCG3D
- Migration to Oracle and 2005 data volume
- 3D data inventory efforts
- Inventory: data vs. database applications
- Parade of ATLAS database applications
 - Offline
 - Technical Coordination (detector production DB)
 - Online
- Conclusions

ATLAS Database Project

 All ATLAS database domains are now under the umbrella of the new Database Project

- Launched in May 2004
- Led by Richard Hawkings and Torre Wenaus
- http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/project
- Emphasis on integration of different domains
- Provides representatives to LCG3D

ATLAS and LCG3D

- ATLAS makes use of a distributed infrastructure of relational databases for access to various types of nonevent data and event metadata
- Distribution, replication, and synchronization of these databases, which are likely to employ more than one database technology:
 - Oracle in larger centers

 MySQL in smaller settings and for smaller applications must be supported according to the needs of the various database service client applications

 ATLAS favors common LHC-wide solutions and will work with the LCG3D and the other experiments to define and deploy common solutions

Migration to Oracle

 ATLAS acquire significant experience in MySQL database services, been critical for:

- 2004 Combined Test Beam effort
- Current Data Challenge 2 efforts

 Following CERN policy and encouragement to concentrate our database usage around Oracle, we are making increasing use of these services and support

Volume Request for 2005

- 'Psuedo-Cocotime' request made in October 2004
- Combined with CPU, AFS, tapes requests made by G Poulard

Usage	2005 space – GB
Geometry primary numbers	few GB
Conditions data	100 GB
TechCoord production data	100 GB
Event meta-data	250 GB
3D project data	?

 Volumes given as estimated raw data size, not including backup, indexing, mirroring

Vaniachine, Tseng, Formica

3D Data Inventory

- ATLAS started collecting data inventory and submitted required templates to 3D
- A very sound initiative from 3D
- Focus is now shifting from the simple data volume estimated to database applications inventory efforts
- ATLAS parades its first database application ready for distribution at this workshop Vakhtang Tsulaia talk:
 - ATLAS Detector Description DB
- Note: not only distributed application must be counted
 A sample of ATLAS database application follows next

ATLAS Database Applications

- 1) Inventory for (broadly defined) offline sw domain
- Tag Collector software infrastructure support
- AMI Bookkeeping DB (file-level metadata)
- Production system DB
- Detector Description DB
- ConditionsDB IOV DB
- Conditions data payload DB
- Reliable File Transfer DB ATLAS DMS: DQ
- File Catalogs: POOL, RLS,...
- Collections DB (event-level metadata)

Tag Collector DB

- Supported by LPSC Grenoble (Solveig Albrand, Jerôme Fulachier)
- Currently in MySQL
- Critical application for software development infrastructure
- Migration to CERN Oracle is in plans
- Not distributed, a geographically separate replica required as a failover service
- Application is merging within AMI framework

ATLAS Metadata Interface

- AMI is supported by LPSC Grenoble (Solveig Albrand, Jerôme Fulachier)
- Currently in MySQL
- Bookkeeping metadata database for:
 - DCs Data Challenges
 - CTB Combined Test Beam
 - ADA ATLAS Distributed Analysis
- In 2005 migration to Oracle (may be not at CERN)
- Distributed Oracle services is in the plans
 - CERN replica server could be a failover node

Production DB

- ATLAS Production System database
- Data processing tasks configuration, jobs submission, bookkeeping
- Supported by CERN (Luc Goossens)
- MySQL prototypes used in DC1
- Designed in Oracle for DC2
- Hosted on pdb01
- Provided first Oracle operational experience in ATLAS

Production DB book-keeping remarks

Significant performance problems seen

- Some addressed with improved and tuned applications
- Some show need for more servers, dedicated to specific tasks
- What lessons can we learn from this?
 - DB volume is not the whole story, usage patterns place heavy demands on the service
 - IT application consultancy needs to be involved to avoid poor design / inefficient DB usage
 - In the imperfect distributed world, load estimates are going to be very approximate – IT needs to provide appropriate server capacity headroom

Lifecycle Patterns

Disclaimer: observations by an outsider, not by the prodsys team

- Focus is on general patterns what we should be ready for in next ATLAS database applications deployments
- ATLAS ProductionDB operational experience:
 - Initially designed for a few writers
 - writers count exceeded expectations by ten
 - Initially not designed for monitoring
 - used heavily to monitor production progress
 - Best Practices are hard to follow under pressure of DC2
- Should the database application be ready for:
 - ten times more users then was foreseen
 - will be used in a data access/queries pattern never foreseen
- Emerging/familiar pattern? (Already in Murphy's laws?)

Detector Description DB

- DDDB primary numbers for Detector Description
- Supported by U Pittsburgh (*Joe Boudreau, Vakhtang Tsulaia*)
- Initially in MySQL (NOVA)
- Redesigned for Oracle
- Focus on Best Practices from the start
 - fruitful interactions with IT/DB
- Being deployed for DC2 production use
 - Served data to thousands of reconstruction jobs on worldwide grids
- Replication tools
 - JDBC-based (Julius Hrivnac, see his talk at workshop)
 - RAL-based (Vakhtang Tsulaia) work in progress
- First ATLAS distributed database application ready for 3D testbed
- Expected to produce high (read-only) server load in production

ConditionsDB

- Note: separation of IOV data and payload data (NovaBlob DB)
- Supported by Lisbon group (led by Antonio Amorim) and BNL/ANL team (Hong Ma, Alexandre Vaniachine)
- Both currently in MySQL (with payload also in POOL files)
 - Integrated:
 - Web browser: CondDBrowser
 - Replication tools (Sven Schmidt)
 - Served well during Combined Test Beam
 - This week: first large scale production exercise
 - Deployed for Commissioning activities at point 1

Database applications requirements:

- Must be replicated within T0: online-offline
- Have to be distributed beyond T0 (scale to be defined)
 Expecting Oracle implementation in March

Data Management System

- ATLAS Data Management System Don Quixote (*Miguel Branco*) elegantly integrates a zoo of database applications:
- Mostly File Catalogs: POOL, RLS,...
 - mixture of MySQL and Oracle
- Reliable File Transfer DB
 - Currently in MySQL (*Miguel Branco*)
 - Integrated in Globus GT4 RFT
- Not replicated/distributed (to our knowledge)
 - except failover needs

Collections DB

This database application is from POOL project

- significant ATLAS contributions (*David Malon*, *Kristo Karr*)
- Very data volume intensive
 - Event-level metadata (tag database)
- Currently in MySQL
- Heterogeneous replication tools (Julius Hrivnac)
- DC2 Collections data is ready for 3D testbed

Technical Coordination

- ATLAS equipment management database, used for managing racks, cables
 - Common project with CMS, runs on pdb servers usage increasing as detector installation / commissioning is proceeding
- Use of MTF and EDMS for handling production data and documentation
 - User perception that database infrastructure is slow (but also slow interfaces)
- Subdetector production data in various technologies
 - Encouraging data migration to CERN Oracle for long term security
- No replication/distribution requests

Online application types

- DAQ Configuration
 - Tdaq current state (ReIDB should replace XML files)
- Sub-detector Configuration (Electronics config, Cable mapping)
 - XML files or ReIDB tables , versioning needed
- DCS (Temperature, HV, pressure,...)
 - Large use in H8 during 2004 testbeam (Condition DB)
 - Activity foreseen for 2005 during commissioning

Calib/Align

- Large amount of data in ReIDB (used in Muon system align. also as data source, i.e. for determining the corrections)
- Sensors data available during commissioning in 2005 (Bfield, Align.,..)
- Usage of POOL(ROOT) files referenced in relational tables

Monitoring

- Histograms important during commissioning
- ROOT files referenced in a relational DB

Online inventory remarks Inventory for 2005 (preliminar)

- Conditions Data : requirements from several subsytems already available (data volume/year)
 - Central DCS : ~4GB
 - Muons (DCS+Align+BField): <15GB</p>
 - Lar : ~100 MB
- Configuration Data : not yet well defined
 - TDAQ : ~1GB
- Monitoring data : mainly histogram files (large data volume)
 - Do they need replication ?
- Number of clients and type of access still difficult to be estimated. Extrapolation of H8 situation not always realistic
- To Do : try to collect missing information and needs for replication/distribution in the online community

Conclusions

- ATLAS Oracle-CERN usage is now ramping up fast
- 2005 will see (at least) three very high profile activities:
 - Production DB for offline production
 - dozens of concurrent writers
 - Geometry DB for offline production
 - thousands of concurrent readers
 - Online (conditions) DB for commissioning focussed at point 1
- In all cases, will need significant dedicated resources
 - Database problems if any will be very 'visible'
 - Other smaller scale activities will continue
 - TAG database may require significant volumes