Agenda: 2 separate talks!

Don’'t mangle together what does
not belong together

1. Schema Evolution Tests
2. Dictionaries on Demand

O

M.Frank CERN/LHCDb - Persistency Workshop, Dec.2004




Schema Evolution Tests

»POOL/ROOT Schema evolution
» Motivation
»Planned tests

O

M.Frank CERN/LHCDb - Persistency Workshop, Dec.2004




Goals

» Schema evolution

» Proof that POOL inherits the ROOT schema evolution
No more — no less
No extras

» Dictionary on demand
» Late loading of dictionaries

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 3 | Pool n'zgz-



Schema Evolution

» Root provides schema evolution

» POOL inherits the ROOT schema evolution

» class TStreamerinfo
» No extra effort inside POOL necessary

» But it has to be tested...
» Establish test matrix

» Cross check with native root
ie. rootcint generated dictionaries

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 4




Schema Evolution Test Matrix

Handled by ROOT | Handled by POOL

Change class type

change namespace ? ?
to related type ? ?
to unrelated type ? ?
Add new data member ? ?
Remove data member ? ?
Rename data member ? ?

Change data member type
change namespace
to related type
to unrelated type
change primitive type

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 5




Timescale

> After the move to ROOT 4.02
> Results (and possible fixes) around Easter

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 6 — Pool %=



On Demand Dictionary Loading

»Usage of dictionaries
»Circumstances/boundary conditions
» Technical details

»Required changes

O

M.Frank CERN/LHCDb - Persistency Workshop, Dec.2004




Dictionaries on Demand

» Dictionaries are necessary
» At write time for the classes to be written
> At read time when they are requested by ROOT

» Any class dictionary must be complete
» The class itself
» Any base class
» Any aggregate/association

Let’s analyze the current situation

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 8



POOL and ROOT Reflection

h lcgdict > seal::reflect::Class

Looks pretty much the same... POOL Gateway
Except subtle differences

ROOT ROOT
Metaclasses /O
A
cint E CINT CINT
rootcin
.n data Interpreter
I 4

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 9



What are the Differences ?

» rootcint provides a callback when a class comes
online / offline

» This allows to convert “fake” classes on the fly to
“real” classes

» SEAL reflection currently does not
» Will be part of Reflex (evolution of SEAL dictionary)
» ROOT and SEAL class names are the same

...most of the time

» e.g. ROOT/CINT does not use the “std” namespace
(remember gcc 2.95 was the same ?)

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 10




Consequences (1)

» POOL registers a “TClassGenerator” module
to ROOT,
> retrieves load requests and must satisfy them
» Requests are expressed in the names known to ROOT
» There is no second notification

» ROOT / CINT meta-classes can only created by
the POOL gateway is a SEAL reflection class
is available

» The requested dictionary module must be loaded

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 11 — Pool -~



Consequences (2)

» ROOT wants to know the data member offsets
to generate TStreamerinfo(s) and calls

> “ShowMembers”, which requires an object instance

For any dictionary translation we need

> A valid LCG dictionary
> A valid object instance

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 12 — Pool %=




Possible Solutions

» Use the SEAL dictionary service
» Would work well for reading and writing as long as

» As long as there are no abstract classes and
an object instance can easily be created

» The std namespace is not in use

» Based on capability information (I guess)
No library loading, but no inheritance information either

» Otherwise:
Need to scan all existing classes and look for

» ROOT — SEAL name translation match
» Concrete meta-classes of abstract types

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 13




Hence, the Problems are...

» Need to blindly scan for classes

» At this moment the dictionary service is
no longer helpful

» Likely to end up with even more dictionaries in memory

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 14



Any Feasible Solution

1. Requires that the POOL gateway keeps track
of all dictionaries which are
» Currently “on hold” requested by ROOT
» “on hold” = described by a “fake class”
» This is done by ROOT using TClassGenerator
» Currently “online” in the seal reflection

» Need to migrate to Reflex

2. Requires POOL to be notified

» When ROOT uses a metaclass the first time
(while reading), not or not only when opening the file

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 15




Any Feasible Solution (2)

3. Requires that the bloody type names become
standardized

>
>

vV VYV

Remember: Everything is bound using strings

And this is a huge mess

» There is no standard and no agreement whatsoever !
Std or not ...

“using” or not

short signed, short signed int, signed short int
they all come along - name them !!

CINT, gcexml, cxxabi and VC++ | know to be different
Probably every compiler has it's own opinion .

V V VY

Rl X
"‘1.’— m_
Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 16 — Pool n.%a




Timescale

> After the move to ROOT 4.02

> After the move to Reflex
» All of POOL needs to move
it will enter at the top level interfaces
» Hopefully after a standardization of type names
> If there is any hope at all

» But | stll strongly believe there should be a
unambiguous uniquely reversible transformation
between the type name and the typeid

> It is feasible, but it needs collaboration between
SEAL - ROOT - POOL

> No timescale

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 17




Conclusions

» The ROOT schema evolution mechanisms
must be tested
» After the move to ROOT 4.02
» Hopefully results will be present until Easter
» The testing could also be a project for outside contributors

» Dictionaries on Demand
» Require the next generation reflection interface

» Preferably receive a callback from ROOT on the first
usage of a meta-class

» Require some common naming conventions

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 18




