
M.Frank CERN/LHCb - Persistency Workshop, Dec.2004

POOL References / Collections
in ROOT – an Outlook
POOL References / Collections
in ROOT – an Outlook

Refs
Collections
Solutions and non-solutions

The simple
the difficult
and the hopeless

M.Frank CERN/LHCb 2Persistency Workshop, Dec.2004

GoalsGoals

Allow interpreted pool::Ref<T> be
interchangeably used with
compiled pool::Ref<T>
Allow access to POOL collections (or a subset)
from the interactive root prompt
Make the good parts of POOL available from
ROOT interactively

M.Frank CERN/LHCb 3Persistency Workshop, Dec.2004

Current AssumptionsCurrent Assumptions

What the different requirements imposed…

1. There is no checkpoint when the entire object
cache can be safely deleted

2. The cache instance objects live in is at user’s
choice

3. No _significant_ ROOT-only developments are
done

M.Frank CERN/LHCb 4Persistency Workshop, Dec.2004

FundamentalsFundamentals

There are 2 approaches to interactive ROOT
1. “Cintify” POOL

Use pool from root prompt like compiled root
Need to translate all classes

Including all argument types
Pool::Ref, pool::DataSvc, …

2. “Rootify” POOL
Initialize POOL once
Then use ROOT classes directly

Root dict’s must be generated from LCG dictionaries

M.Frank CERN/LHCb 5Persistency Workshop, Dec.2004

“Cintify” POOL“Cintify” POOL

Proof was done
Not too elegant, but concept works
Interpreted Ref<T> instances are passed to compiled
pool code
Required separate Ref<T> and cache implementation

Some POOL implementation need changes
But this should be feasible

Example:
/cvs/POOL/contrib/RootRefs
/cvs/POOL/pool/config/cmt/RootRefs/cmt/*.C

M.Frank CERN/LHCb 6Persistency Workshop, Dec.2004

pool::Ref<T> Interpreted vs.Compiledpool::Ref<T> Interpreted vs.Compiled

Currently CINT has problems to deal with
pool::Ref<T>
Interpreter (technical, hence no-) problems

Less the references, but rather all the mess one gets
with dependent headers are problematic

More fundamental problems
pool::Ref<T> uses typeid(T) operator…
typeid(T) works in CINT and works in compiled code
But they are instances of unrelated classes
and can only be used in their own environment
If to be solved only with workaround!

M.Frank CERN/LHCb 7Persistency Workshop, Dec.2004

“Rootify” POOL (1)“Rootify” POOL (1)

Basic idea is to allow for analyses like:
gSystem->Load(“pool.dll”)

TClass* c=gROOT->GetClass(“PoolInitialize”);

PoolInitialize initialize();

TFile* f = new TFile(“my_pool_file.root”);

TTree* t = (TTree*)f->Get(“My_pool_container”);

TBranch* b = f->GetBranch(“My_pool_container”);

MyObj* pObj = new MyObj();

b->SetAddress(&pObj);

For (int i=0; i<t->GetEvents(); ++i) {

int nbytes = b->GetEvent(i);

if (nbytes > 0) { . . . }

}

Standard
ROOT

POOL
initialization

M.Frank CERN/LHCb 8Persistency Workshop, Dec.2004

“Rootify” POOL (2)“Rootify” POOL (2)

This approach would work …if
MyObj has no aggregated pool::Ref<T>

There are several reasons…
But the main reason is the same why C-pointers got
replaced by pool::Ref<T>
Load-on-demand and reference counting of objects
pool::Ref<T> does not take ownership
Ownership is with the object cache -
whatever the cache implementation is
Tight collaboration between cache and reference

M.Frank CERN/LHCb 9Persistency Workshop, Dec.2004

“Rootify” POOL: Basics“Rootify” POOL: Basics

Data Service object cache

<…><pointer>

<…>…

TokenObject

Persistency Service

Object type

Storage type

Persistent Reference

T o k e n

Cache Ref

Data Service

Pointer

Ref<T>Ref<T>

File CatalogFile Catalog

M.Frank CERN/LHCb 10Persistency Workshop, Dec.2004

“Rootify” POOL (3)“Rootify” POOL (3)

For any number of instances of pool::Ref<T>
referring to the same object

Only one line in the pool cache may be filled
Any aggregated Ref<T> must at load-time check if it’s
cache line is present – if not inject a new cache line

The collaboration between pool::Ref<T>
and the data cache is broken if objects are
not loaded with pool

References will not work
Neither will they be written properly
Nor can they be de-referenced

M.Frank CERN/LHCb 11Persistency Workshop, Dec.2004

POOL CollectionsPOOL Collections

Effectively all the arguments made for objects
still valid
“Cintified” collections – feasible
“Rootified” collections (???)

Collection “items” can always be read by ROOT
if the collection was written by ROOT

It’s an N-tuple !
Trees get booked with each primitive as separate branch

M.Frank CERN/LHCb 12Persistency Workshop, Dec.2004

POOL CollectionsPOOL Collections

But the refs……or how do I get the event ?
Same argument as before:
Refs want to collaborate with caches
they live in and from the POOL framework
which feeds them and caresses them
If there is none – tough luck

However, normally the situation is a bit better
Token typically is stored as a string
Object typically can be retrieved, but with workarounds

M.Frank CERN/LHCb 13Persistency Workshop, Dec.2004

The HopelessThe Hopeless

tree->Draw(“pool_ref->dataItem()”);
No handles can be installed to prepare pool::Ref<T>
(or they are unknown to me)
No connection to cache is available

M.Frank CERN/LHCb 14Persistency Workshop, Dec.2004

Current AssumptionsCurrent Assumptions

1. There is no checkpoint when the entire object
cache can be safely deleted

Now object _only_ disappear when all refs are out-of-
scope

2. The cache instance objects live in is at user’s
choice

3. No _significant_ ROOT-only developments are
done

?What happened if we give up these ?

M.Frank CERN/LHCb 15Persistency Workshop, Dec.2004

Loosening Current AssumptionsLoosening Current Assumptions

1. There is no checkpoint when the
entire object cache can be safely cleared

→ hooks in TTreePlayer ?
→ hooks in TTree/TBranch::Fill() / GetEntry()

2. The cache instance objects live in is at user’s
choice

Cache is set atomically at reading time
3. No _significant_ ROOT-only developments are

done
Root specific reference validation in streamer function
instead of generic handling

M.Frank CERN/LHCb 16Persistency Workshop, Dec.2004

SummarySummary

It depends what is required…
If “Cintify” POOL is sufficient

In principle straight forward
Effort is needed, but the path is straight

If “Rootify” POOL & the hopeless is a must
Technology independent pool implementations
can only be used at a very limited scale
Pool::Ref<T> and an appropriate cache go together
Need to install hooks in ROOT in order to ensure
reference-cache collaboration
Significant development

