POOL References / Collections
in ROOT - an Outiook

> Refs
» Collections

»Solutions and non-solutions
The simple

the difficult
and the hopeless L C

:n.:

M.Frank CERN/LHCDb - Persistency Workshop, Dec.2004

Goals

» Allow interpreted pool::Ref<T> be
interchangeably used with
compiled pool::Ref<T>

> Allow access to POOL collections (or a subset)
from the interactive root prompt

» Make the good parts of POOL available from
ROOT interactively

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 2

Current Assumptions

>

What the different requirements imposed...

. There is no checkpoint when the entire object

cache can be safely deleted

. The cache instance objects live in is at user’s

choice

No _significant ROOT-only developments are
done

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 3

Fundamentals

» There are 2 approaches to interactive ROOT
1. “Cintify” POOL

» Use pool from root prompt like compiled root
» Need to translate all classes

» Including all argument types

> Pool::Ref, pool::DataSvc, ...

2. “Rootify” POOL
» Initialize POOL once
» Then use ROQT classes directly

Root dict’s must be generated from LCG dictionaries

T
Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 4 — Pool -

“Cintify” POOL

» Proof was done
» Not too elegant, but concept works

> Interpreted Ref<T> instances are passed to compiled
pool code
» Required separate Ref<T> and cache implementation

» Some POOL implementation need changes
» But this should be feasible

» Example:
Icvs/POOL/contrib/RootRefs
Icvs/POOL/pool/config/icmt/RootRefs/cmt/*.C

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 5

pool::Ref<T> Interpreted vs.Compiled

» Currently CINT has problems to deal with
pool::Ref<T>

» Interpreter (technical, hence no-) problems
» Less the references, but rather all the mess one gets
with dependent headers are problematic
» More fundamental problems

» pool::Ref<T> uses typeid(T) operator...
typeid(T) works in CINT and works in compiled code
But they are instances of unrelated classes
and can only be used in their own environment

> If to be solved only with workaround!

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 6

“Rootify” POOL (1)

> Basic idea is to allow for analyses like:

gSystem->Load (“pool.dll”)
TClass* c=gROOT->GetClass (“PoolInitialize”); ID()C)L
PoolInitialize initialize(); initialization

TFile* £ = new TFile(“my pool file.root”);

TTree* t = (TTree*) f->Get(“My pool container”) ;

TBranch* b = f->GetBranch(“My pool container”);

MyObj* pObj = new MyObj () ; Standard
b->SetAddress (&pObj) ; ROOT

For (int i=0; i<t->GetEvents(); ++i) {
int nbytes = b->GetEvent (i) ;
if (nbytes >0) { . . . }

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 7

“Rootify” POOL (2)

» This approach would work ...if

>

>

MyODbj has no aggregated pool::Ref<T>

There are several reasons...

>

vV VYV

But the main reason is the same why C-pointers got
replaced by pool::Ref<T>
Load-on-demand and reference counting of objects

pool::Ref<T> does not take ownership

Ownership is with the object cache -
whatever the cache implementation is

Tight collaboration between cache and reference

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 8

“Rootify” POOL: Basics

(" Data Service object cache

Object Token

Cache Ref <pointer>

Data Service n
|]

Token

Pointer IIIIIIIIIIIII.
Storage type

Object type

Persistent Reference

ile Catalog Persistency Service

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 9

“Rootify” POOL (3)

» For any number of instances of pool::Ref<T>
referring to the same object
» Only one line in the pool cache may be filled
» Any aggregated Ref<T> must at load-time check if it's
cache line is present — if not inject a new cache line
» The collaboration between pool::Ref<T>
and the data cache is broken if objects are
not loaded with pool
» References will not work
» Neither will they be written properly
» Nor can they be de-referenced ==

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 10

POOL Collections

» Effectively all the arguments made for objects
still valid

» “Cintified” collections — feasible
» “Rootified” collections (?77?)

» Collection “items” can always be read by ROOT
if the collection was written by ROOT
» It's an N-tuple !
» Trees get booked with each primitive as separate branch

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 11

POOL Collections

» But the refs...... or how do | get the event ?

» Same argument as before:
Refs want to collaborate with caches
they live in and from the POOL framework
which feeds them and caresses them

> If there is none — tough luck

» However, normally the situation is a bit better
» Token typically is stored as a string
» Object typically can be retrieved, but with workarounds

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 12 ""...':..:.)r 9] -_:Ea-

The Hopeless

> tree->Draw(“pool_ref->dataltem()”);

» No handles can be installed to prepare pool::Ref<T>
(or they are unknown to me)

» No connection to cache is available

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 13 — Pool -~

Current Assumptions

1. There is no checkpoint when the entire object
cache can be safely deleted

» Now object only disappear when all refs are out-of-
scope

2. The cache Iinstance objects live in is at user’s
choice

3. No _significant ROOT-only developments are
done

?

m What happened if we give up these

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 14 — Pool -

Loosening Current Assumptions

1. There is no checkpoint when the
entire object cache can be safely cleared
» — hooks in TTreePlayer ?
» — hooks in TTree/TBranch::Fill() / GetEntry()

2. The cache Iinstance objects live in is at user’s
choice
» Cache is set atomically at reading time

3. No _significant ROOT-only developments are
done

» Root specific reference validation in streamer function
iInstead of generic handling AT s o

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 15

Summary

» It depends what is required...

» If “Cintify” POOL is sufficient

» In principle straight forward
» Effort is needed, but the path is straight

> If “Rootify” POOL & the hopeless is a must

» Technology independent pool implementations
can only be used at a very limited scale

» Pool::Ref<T> and an appropriate cache go together

» Need to install hooks in ROOT in order to ensure
reference-cache collaboration

» Significant development = _.-J
i

Persistency Workshop, Dec.2004 M.Frank CERN/LHCb 16

