the globus alliance www.globus.org

Grid Monitoring and Information Services:

National

Centre

e-Science

Globus Toolkit MDS4 & TeraGrid Inca

Jennifer M. Schopf
Argonne National Lab
UK National eScience Center (NeSC)

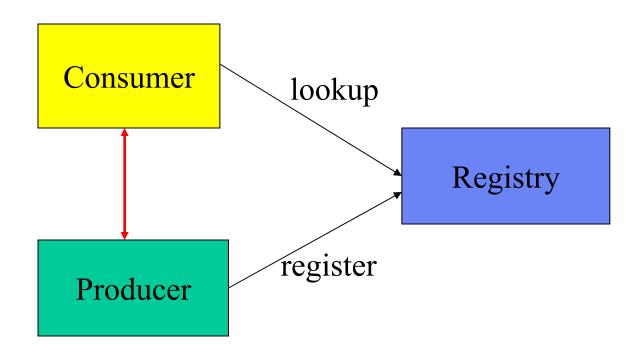
Overview

- Brief overview of what I mean by "Grid monitoring"
- Tool for Monitoring/Discovery:
 - Globus Toolkit MDS 4
- Tool for Monitoring/Status Tracking
 - Inca from the TeraGrid project
- Just added: GLUE schema in a nutshell

What do I mean by monitoring?

- Discovery and expression of data
- Discovery:
 - Registry service
 - Contains descriptions of data that is available
 - Sometimes also where last value of data is kept (caching)
- Expression of data
 - Access to sensors, archives, etc.
 - Producer (in consumer producer model)

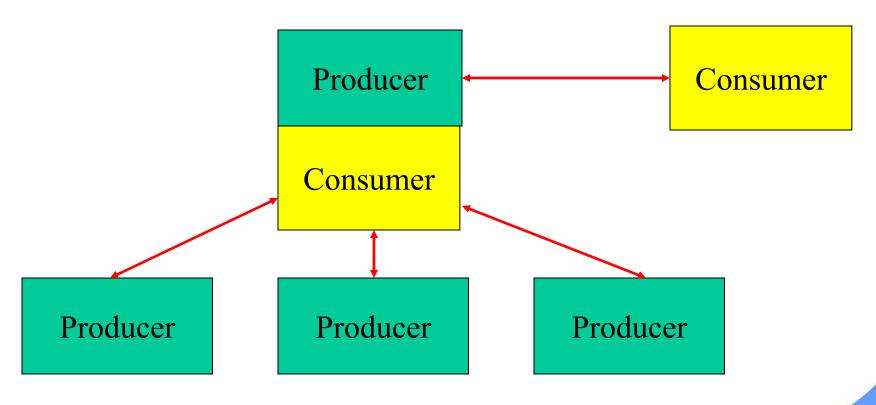
- Grid level monitoring concerns data that is:
 - Shared between administrative domains
 - For use by multiple people
 - Often summarized
 - (think scalability)
- Different levels of monitoring needed:
 - Application specific
 - Node level
 - Cluster/site Level
 - Grid level
- Grid monitoring may contain summaries of lower level monitoring



Grid Monitoring Does Not Include...

- All the data about every node of every site
- Years of utilization logs to use for planning next hardware purchase
- Low-level application progress details for a single user
- Application debugging data (except perhaps notification of a failure of a heartbeat)
- Point-to-point sharing of all data over all sites

The globus alliance e-Science by the globus organitoring systems look like entre GMA architecture



Compound Producer-Consumers

 In order to have more than just data sources and simple sinks approaches combine these

Pieces of a Grid Monitoring System

- Producer
 - Any component that publishes monitoring data (also called a sensor, data source, information provider, etc)
- Consumer
 - Any component the requests data from a producer
- Registry or directory service
 - A construct (database?) containing information on what producer publishes what events, and what the event schemas are for those events
 - Some approaches cache data (last value) as well
- Higher-Level services
 - Aggregation, Trigger Services, Archiving
- Client Tools
 - APIs, Viz services, etc

PGI Monitoring Defined Usecases

- Joint PPDG, GriPhyN and iVDGL effort to define monitoring requirements
- http://www.mcs.anl.gov/~jms/pgmonitoring
- 19 use cases from ~9 groups
- Roughly 4 categories
 - Health of system (NW, servers, cpus, etc)
 - System upgrade evaluation
 - Resource selection
 - Application-specific progress tracking

Why So Many Monitoring Systems?

- There is no ONE tool for this job
 - Nor would you ever get agreement between sites to all deploy it if there was
- Best you can hope for is
 - An understanding of overlap
 - Standard-defined interactions when possible

Withings to Think About 💍 When Comparing Systems

National

Centre

e-Science

- What is the main use case your system addresses?
- What are the base set of sensors given with a system?
- How does that set get extended?

the globus alliance

- What are you doing for discovery/registry?
- What schema are you using (do you interact with)?
- Is this system meant to monitor a machine, a cluster, or send data between sites, or some combination of the above?
- What kind of testing has been done in terms of scalability (several pieces to this - how often is data updated, how many users, how many data sources, how many sites, etc)

Two Systems To Consider

- Globus Toolkit Monitoring and Discovery System 4 (MDS4)
 - WSRF-compatible
 - Resource Discovery
 - Service Status
- Inca test harness and reporting framework
 - TeraGrid project
 - Service agreement monitoring software stack, service up/down, performance

- WS-RF compatible
- Monitoring of basic service data
- Primary use case is discovery of services
- Starting to be used for up/down statistics

MDS4 Producers: Information Providers

- Code that generates resource property information
 - Were called service data providers in GT3
- XML Based not LDAP
- Basic cluster data

the globus alliance

- Interface to Ganglia
- GLUE schema
- Some service data from GT4 services
 - Start, timeout, etc
- Soft-state registration
- Push and pull data models

- Aggregator is both registry and cache
- Subscribes to information providers
 - Data, datatype, data provider information
- Caches last value of all data

the globus alliance

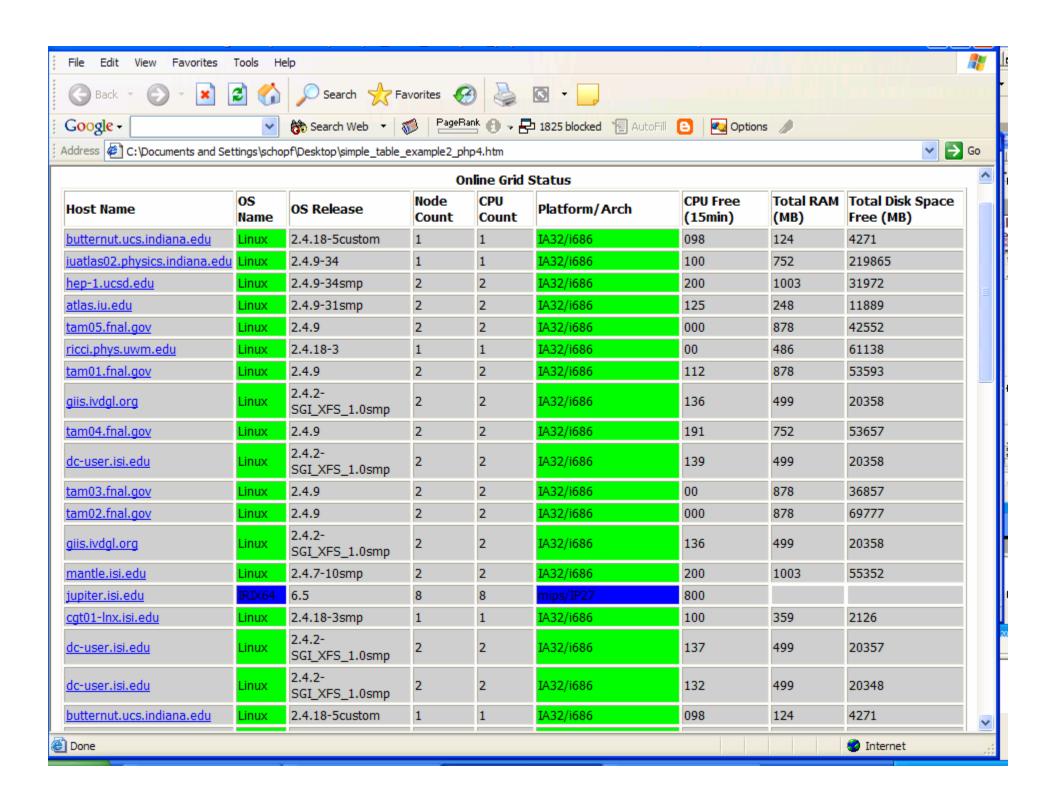
• In memory default approach

MDS4 Trigger Service

- Compound consumer-producer service
- Subscribe to a set of resource properties
- Set of tests on incoming data streams to evaluate trigger conditions
- When a condition matches, email is sent to pre-defined address
- GT3 tech-preview version in use by ESG
- GT4 version alpha is in GT4 alpha release currently available

MDS4 Archive Service

- Compound consumer-producer service
- Subscribe to a set of resource properties
- Data put into database (Xindice)
- Other consumers can contact database archive interface


Will be in GT4 beta release

MDS4 Clients

- Command line, Java and C APIs
- MDSWeb Viz service
 - Tech preview in current alpha (3.9.3 last week)

Coming Up Soon...

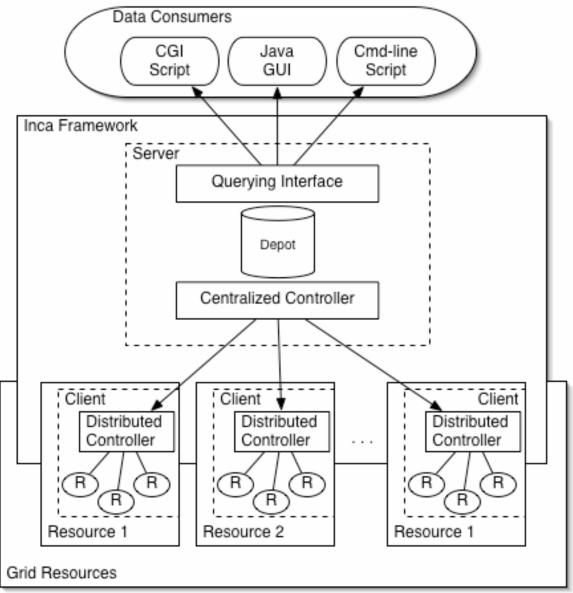
- Extend MDS4 information providers
 - More data from GT4 services (GRAM, RFT, RLS)
 - Interface to other tests (Inca, GRASP)
 - Interface to archiver (PinGER, Ganglia, others)
- Scalability testing and development
- Additional clients
- If tracking job stats is of interest this is something we can talk about

TeraGrid Inca

- Originally developed for the TeraGrid project to verify its software stack
- Now part of the NMI GRIDS center software
- Now performs automated verification of servicelevel agreements
 - Software versions
 - Basic software and service tests local and crosssite
 - Performance benchmarks
- Best use: CERTIFICATION
 - Is this site Project Compliant?
 - Have upgrades taken place in a timely fashion?

Inca Producers: Reporters

- Over 100 tests deployed on each TG resource (9 sites)
 - Load on host systems less than 0.05% overall
- Primarily specific software versions and functionality tests
 - Versions not functionality because functionality is an open question
 - Grid service capabilities cross-site
 - GT 2.4.3 GRAM jobs submission & GridFTP
 - OpenSSH
 - MyProxy
- Soon to be deployed: SRB, VMI, BONNIE benchmarks, LAPACK Benchmarks



Support Services

- Distributed controller
 - runs on each client resource
 - controls the local data collection through the reporters
- Centralized controller
 - system administrators can change data collection rates and deployment of the reporters
- Archive system (depot)
 - collects all the reporter data using a round-robin database scheme.

the globus alliance www.globus.org

Interfaces

- Command line, C, and Perl APIs
- Several GUI clients
- Executive view
 - http://tech.teragrid.org/inca/TG/html/execV iew.html
- Overall Status
 - http://tech.teragrid.org/inca/TG/html/stackStatus.html

the globus alliance www.globus.org

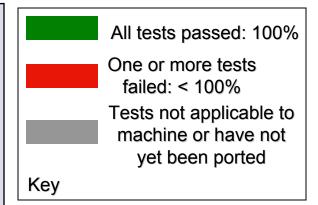
Example Summary e-Science View Snapshot Centre

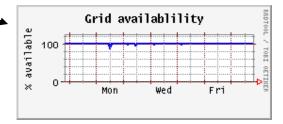
TERAGRID

Summary * CTSS * SoftEnv (detail) * Default User Environment

Summary of Common TeraGrid Software and Services 2.0 Page generated by Inca: 07/13/04 18:39 CDT

This page offers a summary of results for critical grid, development, and cluster tests (<u>view list of tests</u>). Details about a resource's test results are available by clicking on the resource name in the "Site-Resource" column of the table.


Site-Resource	Grid	Development	Cluster	Total Pass	
site1-resource1	Pass: 32 Fail: 1	Pass: 23 Fail: 0	Pass: 1 Fail: 1	Pass: 56 Fail: 2	
	96% passed	100% passed	50% passed	96% passed	
site1-resource2	Pass: 22 Fail: 7	Pass: 23 Fail: 0	Pass: 1 Fail: 1	Pass: 46 Fail: 8	
	75% passed	100% passed	50% passed	85% passed	
site2-resource1	Pass: 1 Fail: 18	Pass: 2 Fail: 10	n/a	Pass: 3 Fail: 28	
	5% passed	16% passed		9% passed	


Expanded View of Errors

site1-resource1

Grid

1. globus-2.4.3-intel-r3: <u>failed: duroc_mpi_helloworld_to_jobmanager-pbs</u> test

History of percentage of tests passed in "Grid" category for a one week period

Common TeraGrid Software and Services 2.0: CTSS-Compute Page generated by Inca: 11/02/04 03:06 CST

openssh [download]					help]						[back	to top]
version	anl- ia64	anl-viz	caltech- ia64	indiana- avidd	ncsa- ia64	psc- gs1280	psc-tcs	purdue- linux	purdue- sp	sdsc- datastar	sdsc- ia64	tacc- Ionestar	tacc-viz
any	3.7.1p2	3.7.1p2	3.8.1p1	3.8.1p1	3.7.1p2	3.8.1p1	3.8.1p1	3.8.1p1	3.8.1p1	3.8p1	3.7.1p2	3.8.1p1	3.8.1p1
unit tests	anl- ia64	anl-viz	caltech- ia64	indiana- avidd	ncsa- ia64	psc- gs1280	psc-tcs	purdue- linux	purdue- sp	sdsc- datastar	sdsc- ia64	tacc- Ionestar	tacc-viz
openssh_to_anl-ia64	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	error	<u>error</u>
openssh_to_anl-viz	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	error	<u>error</u>
openssh_to_caltech- ia64	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	<u>passed</u>	passed	passed	passed
openssh_to_indiana- avidd	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	<u>error</u>	<u>error</u>
openssh_to_ncsa- ia64	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed
openssh_to_psc- gs1280	<u>error</u>	passed	passed	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	passed
openssh_to_psc-tcs	error	passed	passed	erro <u>r</u>	error	passed	passed	passed	passed	passed	passed	passed	passed
openssh_to_purdue- linux	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	<u>passed</u>	passed	passed	passed
openssh_to_purdue- sp	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed
openssh_to_sdsc- datastar	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	<u>error</u>	passed	passed	passed
openssh_to_sdsc- ia64	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	<u>passed</u>	passed	passed	<u>passed</u>
openssh_to_tacc- lonestar	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	<u>passed</u>	<u>passed</u>	passed	passed	passed
openssh_to_tacc-viz	<u>error</u>	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed

The TeraGrid project is funded by the National Science Foundation and includes nine partners:

4 6

ot-Ho

Inca Future Plans

- Paper being presented at SC04
 - Scalability results (soon to be posted here)
 - www.mcs.anl.gov/~jms/Pubs/jmspubs.html
- Extending information and sites
- Restructuring depot (archiving) for added scalability (RRDB won't meet future needs)
- Cascading reporters trigger more info on failure
- Discussions with several groups to consider adoption/certification programs
 - NEES, GEON, UK NGS, others

GLUE Schema

- Why do we need a fixed schema?
 - Communication between projects
- Condor doesn't have one why do we need one?
 - Condor has a defacto schema
 - OS won't match to OpSys major problem when matchmaking between sites
- What about doing updates?
 - Schema updates should NOT be done on the fly if you want to maintain compatibility
 - On the other hand, they don't need to be since by definition they include deploying new sensors to gather data
 - Whether or not sw has to be re-started after a deployment is an implementation issue, not a schema issue

Glue Schema

- Does a schema have to define everything?
 - No GLUE schema v1 was in use and by plan did NOT define everything
 - It had extendable pieces so we could get more hands on use
 - This is what projects have been doing since it was defined 18 months ago

Extending the GLUE Schema

- Sergio Andreozzi proposed extending the GLUE schema to take into account project-specific details
 - We now have hands on experience
 - Every project has added their own extension
 - We need to unify them
- Mailman list
 - www.hicb.org/mailman/listinfo/glue-schema
- Bugzilla-like system for tracking the proposed changes
 - infnforge.cnaf.infn.it/projects/glueinfomodel/
 - Currently only used by Sergio :)
- Mail this morning suggesting better requirement gathering and phone call/meeting to move forward

Ways Forward

- Sharing of tests between infrastructures
- Help contribute to GLUE schema
- Share use cases and scalability requirements

 Hardest thing in Grid computing isn't technical, it's socio-political and communication

For More Information

- Jennifer Schopf
 - jms@mcs.anl.gov
 - http://www.mcs.anl.gov/~jms
- Globus Toolkit MDS4
 - http://www.globus.org/mds
- Inca
 - http://tech.teragrid.org/inca
- Scalability comparison of MDS2, Hawkeye, R-GMA <u>www.mcs.anl.gov/~jms/Pubs/xuehaijeff-hpdc2003.pdf</u>
- Monitoring Clusters, Monitoring the Grid ClusterWorld
 - http://www.grids-center.org/news/clusterworld/