

"Some Operation Models"

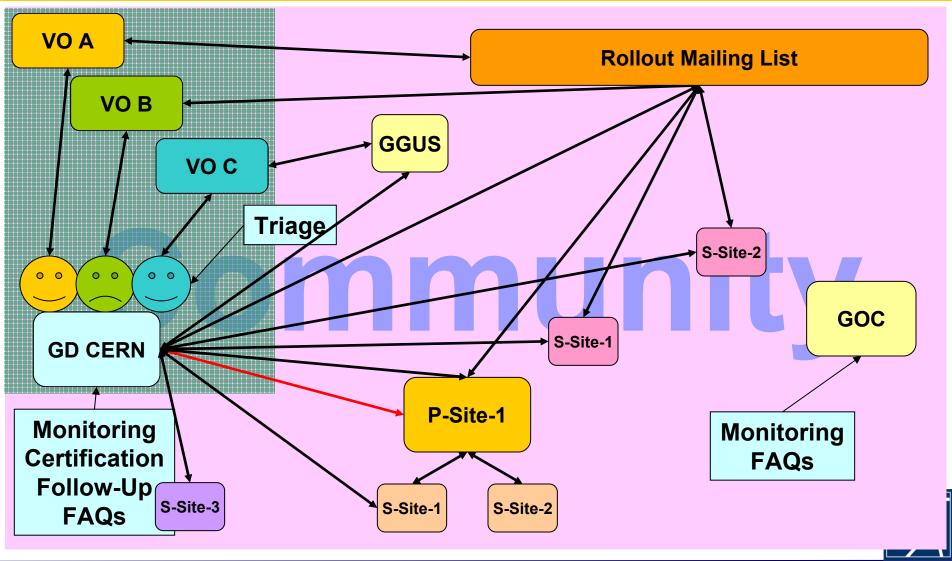
Markus Schulz, IT-GD, CERN markus.schulz@cern.ch

"Strawman to spark discussions"

Outline

- Operating LCG
 - how it was planned
 - how it happened to be done
 - how it felt
- What's next?

Problem Handling PLAN



Problem Handling

Operation (most cases)

PART II

- Operation models
 - How much can be delegated to whom?
 - autonomy/ availability
 - What are the consequences?
 - cost for 24/7 with 8x5 staff
 - One/multiple models for all sites/regions?
 - One model for site integration, update, user support, security, operation?
 - latency, efficiency, distribution of workload
 - One size fits all?
 - Next slides are meant to stimulate discussions not give answers

CICs and ROCs and Operations

- Core Infrastructure Centers (CICs)
 - run services like RBs, Information Indices, VO/VOMS, Catalogues
 - are the distributed Grid Operation Center (GOC)
 - and more....
- Regional Operation Centers (ROCs)
 - coordinate activities in their region
 - give support to regional RCs
 - coordinate setup/upgrades
 - and more...
- Resource Centers (RC)
 - computing and storage
- Operation Management Center (OMC)
 - coordination

Model I Strict Hierarchy

- CICs locates a problem with a RC or CIC in a region
 - triggered by monitoring/ user alert
- CIC enters the problem into the problem tracking tool and assigns it to a ROC
- ROC receives a notification and works on solving the problem
 - region decides locally what the ROC can to do on the RCs.
 - This can include restarting services etc.
 - The main emphasis is that the region decides on the depth of the interaction.
 - ===> different regions, different procedures
 - CICs NEVER contact a site
 - .===> ROCs need to be staffed all the time
 - ROC does it is fully responsible for ALL the sites in the region

Model I Strict Hierarchy

- Pro:
 - Best model to transfer knowledge to the ROCs
 - all information flows through them
 - Different regions can have their own policies
 - this can reflect different administrative relation of sites in a region.
 - Clear responsibility
 - until it is discovered it is the CICs fault then it is always the ROCs fault
- Cons:
 - High latency
 - even for trivial operations we have to pass through the ROCs
 - ROCs have to be staffed (reachable) all the time. \$\$\$\$
 - Regions will develop their own tools
 - parallel strands, less quality
 - Excluded for handling security

Model I Direct Com. Local Contr.

- ROCs are active in:
 - the follow-up of problems that take longer to handle
 - setup of sites
- CICs are active in:
 - handling problems that can be solved by simple interactions
 - communicated directly between CICs and RCs
 - ROCs are informed on all interactions between CICs and RCs
 - all problems are entered into the problem tracking tool.
 - restarting of services, etc. are handled by the RCs

Model I Direct Com. Local Contr.

• Pros:

- Resources are not lost for trivial reasons
- Principe of local control is maintained
- ROCs are in the loop,
 - but weak ROCs can't create too severe delays
- No complex tools for communication management needed
 - mail + IRC sufficient

Cons:

- RCs need to be reachable at all times
 - not realistic, and very expensive €€€€€€€€€€
- CICs have to be aware of the level of maturity of O(100) RCs
- ROCs have to monitor what is going on to learn the trade
- Language problems between the CICs and sysadmins
- Unclear responsibility
 - "This was reported" / "Why didn't the CICs fix it them self"

Model III Direct Com. Direct Contr.

- Like Model II with some modifications
 - CICs have access to the services on the RCs
 - can, if the RC is not staffed, manage some of the services
 - site publishes at any time
 - whether the local support is reachable or not
 - what actions are permitted by the CICs.
 - all interactions are logged and reported to RC and ROC
 - Some tools that allow very controlled (limited) access like this are under development (GSI enabled remote SUDO)
- Variation with ROCs only interaction (IIIa)

Model III Direct Com. Direct Contr.

• Pros:

- Resources are not lost for trivial reasons
- ROCs are in the loop,
 - but weak ROCs can't create too severe delays
- One set of tools for remote operation
 - some uniformity ---> chance for better quality
- Site decides at any time on balance between local/remote operation
- RCs can be run for (short) time unattended

Cons:

- Set of tools for secure limited remote operation respecting the sites policies has to be put in place
- ROCs have to monitor what is going to learn the trade
- Unclear responsibility
 - "This was reported" / "Why didn't the CICs fix it them self"

Sample UseCases

- User reports jobs failing on one site
- User reports jobs failing on some/all sites
- Monitoring shows site dropping in and out of the IS
- An acute security incident
- Upgrading to a new version
- Post mortem after the security incidents
- •

Good preparation for the Operations Workshop

