RADWG-RADMON WORKSHOP SUMMARY TALK

Emmanuel Tsesmelis

TS/LEA

1 December 2004

Introduction

- Seen by LHC Management as extremely important machine and experiments
- Radiation levels around dipoles expected to be a few Gy integrated dose
 - Practical and economic to put electronics equipment close to machine
- Testing of components has also shown that SEUs very important due to hadron flux
- Essential to have radiation monitoring system adapted to needs of radiation tolerance understand from the first day

Dosimetry I

- Active Dosimeters Online Approach
 - Various dosimeter types have been studied
 - Total Ionizing Dose (RadFETs, OSL)
 - 1 MeV Equivalent Fluence (p-i-n diodes, PAD)
 - Thermal neutron Detection (OSL doped with ¹⁰B, npn bipolar transistors, fission converter on Si)
 - All devices characterised extensively, shown to operate reliably and to meet LHC specification (except the rad-hard properties of OSLs)
 - Customisation and calibration of devices for application to the LHC is needed
 - Can also be used in passive mode

Dosimetry II

- Beam Condition Monitor
 - Discriminate bad beam conditions over normal running conditions
 - Provide fast feedback to machine for optimisation
 - Provide high time-resolution diagnostics
 - Redundant system in experimental areas & supported by machine groups
 - Large dynamic range 1 to 10⁸ MIPS/cm²/bx
 - Sensor material CVD Diamond
 - Development & choice of sensor and availability of fast amplifiers has matured to meet the specifications of the BCM system.
 - Don't forget interface to the machine control system in the to-do list !

Dosimetry III

- Studies have been carried out at CERF on various types of RP survey meters
 - IG5 ionisation chambers, REM counters, HANDI-TEPC
 - Quality assurance and certification
- Measurement of the ambient dose equivalent
- Response of detectors are understood
 - Can choose appropriate detector for various RP tasks

Dosimetry IV

Beam Loss Monitors

- Ionisation chambers & SEM detectors
 - Providing time resolution of one LHC turn
- Design and development of detectors is advancing well
 - Are the associated electronics radiation-tolerant ?
 - Preliminary results from ageing tests of ionisation chambers show small degradation

Dosimetry V

- Passive Dosimetry
 - Hydrogen Pressure Dosimeter, LiF, Dye Film, TLD, RPL and PAD
 - Various measurements in mixed radiation fields
 - Preliminary results show that RPL & Alanine are well-suited for High Level Dosimetry at CERN (including LHC)
 - □ About 1800 TLDs needed in the LHC experimental areas
 - Further characterisation of devices needed prior to application to the LHC
 - Investment in resources required reader system & manpower

Dosimetry VI – LHC Machine

Radiation Monitoring System

- Large amount of electronic systems in the LHC tunnel (~12.000 crates) and underground areas
- All designs are based on COTS components with variable radiation tolerances
- Prediction of radiation along the ring is based on theoretical models and Monte Carlo codes
- Shielding will be installed in some areas but predicted shielding efficiency may not be achieved
- Damage from Single Events caused by fast neutrons will be first concern
- Monitoring system based on SEU S-RAM counters, RadFETs and pin diodes on a single radiation-tolerant monitoring board
- 125 monitors at start-up; could upgrade up to 4096 monitors
- Conclusions
 - Measure 3 components of the field on-line to determine damage to equipment
 - Recommend to cross-check with passive dosimeters & simulations

Simulations I

LHC Beam Loss Rates

- Total pp collision cross-section, beam-gas, Touscheck, IBS
- Go into arcs, collimation system, dispersion suppressors, IRs, beam dump
- Loss rates re-evaluated taking into account
 - Updated and more realistic machine parameters
 - In reasonable agreement with earlier 1995 figures

Simulations II

Radiation levels in IR3

- DS3 is not the most comfortable location to put electronics
 - Version 6.2+ and Version 6.5
 - Need additional absorbers to protect magnets against quenching
- Radiation levels in IR7
 - Understanding of newly discovered areas of interesting radiation fields – RR73, UJ76, RR77 - has been furthered
 - Studies have found high dose and dose rates in RRs
 - □ Safety factor of 3 is considered not to be safe.
 - Requires implementation of extra shielding to achieve additional order of magnitude.

Simulations III

Radiation levels in UJ32 & RE38

- Beam-gas interactions dominate
- RE38 shielding will reduce radiation by order of magnitude
 - Electronic equipment not radiation hard by design
 - Recommend shielding
- UJ32
 - Existing wall is adequate shielding
 - Dose is not an issue and electronics expected to operate within specification
 - Energetic neutrons may be a problem for power distribution racks close to the beam -> monitor neutron flux

Rad-hard Electronics & Photonics I

LHC Experiments

- COTS vs. custom-made depends on number of chips and complexity
- High radiation environment & practical implementation requires custom-designed electronics
 - COTS vs custom-made depends
 - Significant advancement in ASICS
 - \hfill DMILL 0.8 μm -> CMOS 0.25 μm -> DSM 0.13 μm & beyond
- □ Can we follow speed of development in industry, i.e. MediaMarkt[™]?
 - TID YES!!!
 - SEU NO!!!

Rad-hard Electronics & Photonics II

- Solid-state Cameras for LHC Instrumentation
 - Synchrotron light telescope @ IR4 to measure transverse beam profiles
 - Want to use commercially available equipment low unit volume
 - in 380 Gy/yr environment
 - After 10 Gy, level of damaged pixels is too high, making the E2V CCD camera unusable at LHC
 - Solutions
 - Shielded areas
 - New radiation-tolerant cameras now available
 - Choice of cameras for different radiation areas
 - CID & APD technology

Rad-hard Electronics & Photonics III

LHC Machine Optical Fibres

- Quench Protection System, Power Converters, Cryogenics System, BLM/BPM
- Fibres in tunnel will suffer radiation-induced attenuation
 - Depending on total accumulated dose & dose rate
 - a-SiO₂ doped with impurities (Ge, P, F)
 - Preference to use Ge-doped rather than Ge-P doped fibres
 - Following tests, fibres at IR7 needed to be removed

Experience from other Labs

Tevatron (CDF & D0)

- Multiple techniques to monitor radiation
 - TLDs good for accurate low-to-medium dose evaluation
 - PIN diodes extend to higher dose values
 - Beam loss/halo measurements halo counters & beam shower counters
 - Diamond detector
 - Bonner spheres
 - Complementary and redundant system !
- VME power supply failures

Experience from other Laboratories

RHIC

- Equipment failures
 - VME chassis power supplies
 - Beam Position Monitors
- Radiation monitoring with TLDs
- Solutions
 - Move equipment out of alcoves expensive
 - Switch to rad-tolerant power supplies for VME chassis

Conclusions & Outlook

- Require understanding of the sensitivity of technical equipment to local radiation (in machine & areas)
 - e.g. through Monte Carlo simulations
- Necessary to monitor radiation fields during early commissioning of the LHC in order to prepare for high intensity running and prepare appropriate shielding or other measures.
 - Develop appropriate radiation dosimeters applicable to machine, areas and experiments
- Need to consider the spurious & special machine operating conditions
 - e.g. scrubbing runs, accidental beam losses
- Collaboration & synergy between LHC machine, experiments, other labs and space agencies is encouraged.

Good (converging) progress has been shown but a great deal of interesting works remains to be done to realise the above goals

Acknowledgements

- Many thanks to speakers, chairpersons and organising committee for a successful & fruitful workshop
- The large turn-out and lively question/discussion sessions confirm strong interest in the field
- Hope to see you all again one year from now at the 5th RADWG-RADMON Workshop
 - In the meantime, let's press ahead and complete the studies and systems in time for LHC operation in 2007
- (All presentations available on workshop site http://agenda.cern.ch/fullAgenda.php?ida=a044378)