

On line radiation monitoring in the LHC tunnel and underground areas with SEU counters, RADFETs and PIN diodes

T. Wijnands TS/LEA, C. Pignard AB/CO

Acknowledgements :

RADWG members, ESA, JPL, Radiation community

UCL – Louvain La Neuve, PSI – Villingen, Schering (CIS-BIO International), CEA Valduc

CERN Radioprotection group

Monte Carlo experts (FLUKA, MARS, GEANT4) at CERN and Protvino

RADWG-RADMON day - 1 December 2004

Outline

- → Introduction
- ➔ Motivation
- → Radiation fields around the ring
- ➔ Monitoring system
- ➔ Radiation Monitoring Board
- ➔ Radiation Sensors
- → Results from 2004 campaign

Introduction

Radiation Hazards for the LHC machine :

- → Large amount of electronic systems in the LHC tunnel (~12.000 crates) and underground areas under irradiation
- All designs are based on COTS components with variable radiation tolerances
- Prediction of radiation along the ring is based on theoretical models and Monte Carlo codes
- Shielding will be installed in some areas but predicted shielding efficiency may not be achieved

- EXAMPLE - QUENCH PROTECTION SYSTEM :

- Quench Detectors (2100 Units)
- Acquisition and monitoring
- Quench Heater Power converters (6200 Units)

REQUIRED MINIMUM RADIATION TOLERANCE :

- TID : 200 Gy
- NIEL : 1x10¹² 1 MeV equivalent neutrons/cm²
- Single Event Upset free at 1x10¹¹ hadrons/cm²

Courtesy : R. Denz (LHC/ICP)

3

Radiation Monitoring - Motivation

There is a considerable uncertainty on the radiation environment in the tunnel and on the radiation tolerance of equipment.

The radiation monitoring system will help to reduce this uncertainty by providing an early warning as the radiation levels at the location of the equipment increase.

During circulating beam in LHC :

- → Monitor degradation of electronics due to radiation when beam "on"
- → Detect instantaneous failures caused by radiation (SEEs) instead of by normal MTBF :
 - Propose appropriate radiation tolerant components in case of radiation induced failures
 - Propose appropriate radiation test for upgraded electronics designs before installation in the machine
- Anticipate replacement of electronics that degraded due to cumulative radiation damage effects
- Cross check FLUKA/MARS/GEANT4 simulation results
 - Dynamic pressure in ARCs in coast, after quench, ...
 - "Radiation flash", collimation, radiation in RRs due to collision products, ...
- Measure shielding efficiency confirm staged implementation

Radiation levels - global distribution

Radiation Levels : fluence to dose ratios

Fluence to dose ratios are similar !

T. Wijnands TS/LEA, C. Pignard AB-CO

6

Radiation monitoring system

RADWG-RADMON day - 1 December 2004

Location of Junction box and monitors - ARC

RADWG-RADMON day - 1 December 2004

Radiation Monitoring board

- ➔ Radiation tolerant design (200 Gy)
- → Remote readout via WorldFIP at 1 Mbit/s
- → Up to 100 Hz Measurements of
 - Dose, Dose rate
 - 1 Mev Eq. Neutrons fluence
 - Hadron (E>20 MeV) flux and fluence

V3.1 Prototype Radiation Monitor

Development time : 3 years - first pre-series expected Q3 2005

RADWG-RADMON day – 1 December 2004

Radiation Monitoring board - architecture

Radiation Sensors

➔ Dose sensor : RADFET

- Measure trapped charge in gate oxide
- ΔV at constant current proportional to Dose
- Insensitive to neutrons, high energy hadrons
- → Hadron sensor : Toshiba TC554001AF
 - Measure radiation induced voltage spikes over a reversed biased p-n junction
 - Number of "0-1 or 1-0" in SRAM direct proportional to the hadron fluence (E> 20 MeV)
 - Insensitive to dose, low energy hadrons
 - Neutron sensor : SIEMENS BPW34
 - Measure conductivity variation at high forward injection
 - ΔV at constant current proportional to 1 MeV eq. n
 - Insensitive to dose, high energy hadrons

SIEMENS BPW34

RADFET – bloc diagram

RADFET- manufactures and types

3 manufacturers – 7 different types

Manufacturer A :

- + 100 nm, 400 nm Implanted, 1 μm Implanted
- Four Radfets per chip
 - two 300/50 devices
 - two 690/15 devices
- Die size 1 mm x 1 mm
- 250 mm Kovar lid (Ni, Co, Fe)

Manufacturer B :

- 100 nm, 250 nm, 500 nm
- Two Radfets per chip
- Epoxy plastic lid

Manufacturer C :

- 940 nm
- Die size 1 mm x 1 mm
- Opaque epoxy resin lid

RADFET- readout protocols

Readout protocols are not unique :

Manufacturer A :

- Readout 30 s after power switching
- Readout current 10 or 100 μA
- Recommends several AD conversions

Manufacturer B :

- Readout after 'several seconds'
- Readout current 10, 50 or 100 μA

Manufacturer C :

- Readout after 2 or 4 seconds
- Readout after 10 or 20 seconds is identical
- Readout current 40, 90 or 160 μA

Current rise time increases with dose !

500 nm Radfets from manufacturer B

RADFET- variations in temperature

Temperature coefficients

(for non irradiated devices)

Manufacturer A :

- 100 nm : -1.2 mV per °C
- 400 nm : -1.0 mV per °C
- 1 μm : -1.6 mV per °C

Manufacturer B :

- 100 nm : -0.66 mV per °C
- 250 nm : -1.13 mV per °C
- 500 nm : -1.34 mV per °C

Manufacturer C :

• 940 nm : -3.32 mv per °C

Manufacturer A - RADFET 1000 nm

(non irradiated device)

In practice :

 ΔT is very small (self heating of transformers dominates)

PAGURE Irradiator CEA Saclay

Sensitivity :

Manufacturer A :

- 100 nm : ?
- 400 nm : 80 mV per Gy
- 1 µm : ?

Manufacturer B :

- 100 nm : 5 mV per Gy
- 250 nm : 15 mV per Gy
- 500 nm : 25 mV per Gy

Manufacturer C :

• 940 nm : 120 mV per Gy

SEU counter – bloc diagram

SEU counter - Toshiba TC554001AF-70L

Toshiba TC554001AF-70L

Characteristics :

- 0.4 µm technology
- 3 5 V operation
- 4 Mbit (524288 words x 8 bits)
- grid arrangement 8192 x 512
- min cycle time 70 ns

Heavy Ion Radiation tolerance (0.5 μ m):

- Latch up threshold < 37 Mev.cm²/mg
- SEU threshold < 1.7 MeV.cm²/mg
- No Multiple Bit Upsets
- Cross section 0->1 equal to 1->0
- No frequency effect at 1.25 MHz

Neutron Radiation tolerance :

- 0.4 μ m identical to 0.5 μ m
- no latch up at E_n= 180 MeV

Ref. : Esa/Estec QCQ9956S-C C. Sanderson, RADECS 2000

SEU counter - SEUs in a 6 T SRAM cell 0.4 μm

Asymmetric SRAM cell :

- 3 5 V operation
- 3 TFTs, 3 bulk transistors
- Read at 3 V if β(Q3)/β(Q1) > 3.0
- Write at 3 V if β(Q4)/β(Q2) < 0.1

Effect of lowering the bias V_{dd}

- SEU sensitivity increased
- TID is increased (writing becomes more difficult because β(Q4)/β(Q2) increased)

$$Q_{crit} = C_{node} V_{dd} + I_{restore} / f$$

- Q_{crit} = radiation induced charge
- C_{node} = capacity of the node
 - restore = current restoring transistor
 - = frequency of event

SEU counter - proton cross sections

OPTIS Facility - PSI Villingen Toshiba TC554001 AF Toshiba TC554001 AF 10⁻¹³) 112 Gy 160 Gv * SEU cross section (p) [cm2/bit] SEU cross section (p) [cm2/bit] ò 10⁻¹³) 2 0 0 10⁻¹⁴ 0 0 0 0 0 0 0 10⁻¹⁵ ' 8 Bias 5 V Bias 5 V Bias 4 V 0 Bias 4 V 60 MeV Bias 3.3 V Bias 3.3 V protons 10⁻¹⁶ 10-14 35 10 15 20 25 30 40 45 50 55 60 65 0 2 6 8 10 12 14 16 Λ Particle Energy [MeV] Fluence [cm-2] x 10¹⁰

CYCLONE - UCL Louvain la Neuve

SEU cross section :

- 3 8 x 10⁻¹⁴cm⁻²/bit depending on bias
- Identical to neutron cross sections
- No latch up

Cumulative effects :

- Sensitivity increased at higher dose (but can be used up to 200 Gy)
- Certain bits stuck at "0" after ~160 Gy (but can be annealed out at 100 °C – 4hrs)

Pin Diode – bloc diagram

PIN diode – Siemens BPW34 FS

Characteristics :

- Silicon PIN Photodiode
- Standard off-the-shelf
- Die size 2.65 x 2.65 mm
- Thickness 0.3 mm
- Temperature coef. : 2.4 mV per °C

Readout protocol :

- Readout current 1 mA
- Measure ΔV after 5 ms
- Zero Temperature Coefficient

Neutron response :

- Linear response 10⁸-10¹² neutrons/cm²
- Ref.: CERN-TIS-CFM/IR/92-09 September 1992

SIEMEMS BPW34FS

RADWG-RADMON day - 1 December 2004

PIN diode – 1 MeV neutron response

- High flux operation
- Calibration : 9.1x10¹⁰ neutrons per mV
- No data available below 1x10¹⁰ n/cm²
- Annealing at room temperature small

Delicate experiment Requires additional study to increase sensitivity

Results SPS campaign 2004 – SPS ring BA3

Radiation Field in SPS –BA3 close to RF :

- Dominated by e- and γ
- Fluence : dose ratio = 3.5 x 10⁶ h/Gy·cm⁻²
- ~1000 times less compared to LHC

Results SPS campaign 2004 - LHC Test Facility (TCC2)

LHC Radiation Test Facility (TCC2)

Dose rate 1 MeV neutrons 20 MeV hadrons 1 to 20 Gy per day 8 x 10¹⁰ cm⁻²Gy⁻¹ 4 x 10⁹ cm⁻²Gy⁻¹

LHC ARCs

Dose rate 1 MeV neutrons 20 MeV hadrons 10 Gy per year 5 x 10¹⁰ cm⁻²Gy⁻¹ 3 x 10⁹ cm⁻²Gy⁻¹

Results SPS campaign 2004 – LHC test facility (TCC2)

Dosimeters available :

- Ionisation chambers (2 different types)
- Scintillator probe
- Alanine passive dosimeter

Alanine (C₃H₇NO₂) & RPL

(passive dosimeters)

Measures only during beam on

Automess Dose Rate Meter 6150AD6

- Energy range: 60 keV 1.3 MeV
- Dose rate measurement from 0.01 µSv/h 9.99 mSv/h
- Only for RP purposes (beam off)

PMI – Ionisation chamber

- Calibrated with ¹³⁷Cs
- Dose rate measurement from 1 $\mu Sv/h$
- Not designed for pulsed radiation fields
 (long response time)

Eberline FHT191 N Ionisation chamber

- Energy range 35 keV ... 7 MeV
- Pressurized chamber with N₂
- Dose rate measurement from 10 nSv/h up to 10 Sv/h
- Suited for pulsed radiation fields
 (short response time)

Results SPS campaign 2004 – Dose in TCC2

TS-LEA, CERN, 1211 Geneva 23

Results SPS campaign 2004 – Hadrons in TCC2

100 Hz data acquisition !

Results SPS campaign 2004 – 1 MeV neutrons in TCC2

What we learned in the last 5 years :

- → Radiation measurements in a complex field such as that of the LHC are difficult up to 20% error is possible
- → Good understanding of radiation damage can only be achieved by measuring several components of the radiation field simultaneously (not just dose)
- ➔ For the monitoring of LHC tunnel electronics : on-line measurements with sub second time resolution is required
- → Cross check on a regular basis with passive dosimeters recommended
- → Cross check with simulated (Monte Carlo) predictions recommended (spectra)

Specific to electronics :

- → Damage from Single Events caused by fast neutrons will be our first concern in the LHC
- → A radiation tolerant design for the tunnel based on COTS takes 3 years (including final tests)
- ➔ Don't take anything for granted