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The contextThe context

LHC is at the convergence of two phenomena: 
First generation of accelerators with significant radioactivity 
problem for detector and electronics (and of course for the machine 
itself)
Detectors are so large that they can be technically, functionally 
and economically instrumented only through custom designed 
components

Microelectronics has been enthusiastically embraced by 
the physicists and engineers building detectors

The community of experimentalists has jumped in the 
design of several dozens ASICs with a relatively little 
previous practical background
Successes and mistakes have taught us valuable lessons

Technical
Organizational

Meanwhile Industry is progressing still at exponential 
growing rate…
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The IssuesThe Issues

Experiments have heavily invested in 
custom ASICs
LHC experiments can not exist without 
custom electronics
From here:

Can this model be extended ?
What needs to be designed next and how ?
What are the benefits ?
What are the costs ?
Where does it make sense ?
Which mistakes should be avoided (i.e. from what 
should other people learn)
What organization is necessary to design ASICs 
successfully ?
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OutlineOutline

Understand where we stand
Enabling tricks in ¼ micron CMOS
What has been done for LHC experiments

Illustration: One practical system implemented by using 5 
new ASICs

Where is industry going
Input from microelectronics developments in non-HEP areas

Next generation: 130 nm and beyond
What problems are coming next

Technical
Costs

Summary
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Why ?Why ?

What is the motivation for designing ASICs 
for experiments ?
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Why do we need better Why do we need better 
microelectronics ?microelectronics ?

Material budget in
CMS Silicon tracker



Enabling TechnologiesEnabling Technologies
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Progressing technology +Progressing technology +
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+ Design trick+ Design trick
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= Excellent result= Excellent result
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Design examplesDesign examples

Quad-12 bit 40 MS/s ADCFE for CMS preshower0.8-1.6 Gb/s serializer

Control chip for CMS
Tracker and Ecal
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Summary of ASIC Summary of ASIC 
utilization  in LHCutilization  in LHC

DMILL
0.8 µm BiCMOS “special” technology
some 1,000 6” wafers produced
< 5 major designs

CMOS6
¼ µm CMOS commercial technology
some 2,000 8” wafers produced
> 15 major designs
>> 100 prototype designs
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Case Study: CMS Ecal (1/4)Case Study: CMS Ecal (1/4)

80,000 channels
Requirements for Crystals readout:

12 bit precision on a 16 bit dynamic range
Low power
40 Ms/sec

Optoelectronics dominates system cost if 
not used wisely

Avoid usage of fast links to send unreduced data

Message: cost of ASICs << cost of opto
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Case Study: CMS Ecal (2/4)Case Study: CMS Ecal (2/4)

A
D

A
D

A
D

A
D

A
D

Key Features
Single Power Supply 2.5V
All FE ASICS in CMOS 0.25 µm
Rad-Tol process 

A
D

A
D

A
D

A
D

A
D

Readout Data

Trigger Data

FENIX chip in various modes

Gigabit Links (GOH) 

Multi-Gain Pre-Amplifier (MGPA) 

AD41240 ADC 

Lead-Tungsten crystals

Clock & Control (CCU) 

Clock & Control
APDs

VFE card
FE card
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Case Study: custom ADC (3/4)Case Study: custom ADC (3/4)

Key features
Quad channel Pipelined ADC 
Conversion latency: 6 clock cycles
Resolution: 12bit
High Speed: 40MSPS
Low power: 412 mW @ 2.5V, 40MHz
CMOS 0.25 µm Rad Tol commercial process
Output bus: Multiple modes of operation

Developed by
ChipIdea Microelectronica & CERN

ADC
ADC

ADC
ADC

Selection logic

Ain_0

Ain_1

Ain_2

Ain_3

Dout <11:0>

Range <1:0>

@ 40MHz

“Single ADC” mode for ECAL Crystals
2/12406 – Transparent (2-3 ch)

2/12405 – Transparent (0-1 ch) 

1/780 DDR4 – Ecal with Hysteresis

1/780 DDR3 – Ecal Direct

1/14402 – Ecal with Hysteresis

1/14401 – Ecal Direct

2/1280 DDR0 – Quad ADC

#buses/
BusWidth

Bus speed
[MW/sec]

Mode
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Case Study: CMS Ecal (4/4)Case Study: CMS Ecal (4/4)

VFE Card
5 MGPA
5 AD41240
1 DCU (Detector Control Unit)

FE Card
Serves 5 VFE (25 Channels)
5 Strip Sum FENIX
1 Data FENIX
1 TPG FENIX
Control chips 
(CCU/DCU/LVDSMUX/QPLL/PLL)



Using ASICs is great,Using ASICs is great,
but …but …

where is industry going ?where is industry going ?
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Different growth modelsDifferent growth models

Industry
2x every 18 months since 30 years

Essentially an “evolutionary growth model”
Well predicted, modulated by market demand
Microelectronics is the Primary Tool, enabling new 
applications to be defined:

Gigantic engineering effort are behind many high 
volume popular products (PCs, mobile phones, Wi-Fi
Internet, MP3-HiFi consumer etc.)

HEP
Quantum step every ~ 20 years
> 10 years construction

many unknowns
ROI difficult to predict

Technology is not always perceived as important 
(detectors and physics are first objectives, 
microelectronics is just “another tool”)
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The luckiest paper ever writtenThe luckiest paper ever written
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Scaling continuesScaling continues

Source: Intel



A. Marchioro - CERN-PH/MIC 21

Who is using whatWho is using what
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Smaller is better …Smaller is better …

0.8 µm

0.25 µm

0.13 µm

Power consumption:
0.25 um: Inverter @ 100 MHz: 5.5 uW
0.13 um: Inverter @ 100 MHz: 0.58 uW

Power consumption:
0.25 um: Inverter @ 100 MHz: 5.5 uW
0.13 um: Inverter @ 100 MHz: 0.58 uW

P1262 SRAM Cell
20022002

mmmm

Contact in 1978
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What’s in it for usWhat’s in it for us

Much higher integration capabilities
Better instrumentation and better data
More reliable equipment
Microelectronics can reduce dramatically system cost

Only if integrated early and fully in system design
Future higher integration can open the way to 
solutions just un-thinkable today

Think of how transistor on non-silicon substrates has 
revolutionized the market of displays
Think of how flash memory technology is changing the 
market of consumer portable HiFi devices
Think of how microelectronics technology combined with 
huge advances in coding theory has revolutionized the 
telecom world

Several MB/s and more on a 3 KHz BW phone line
10 MB/s and more on radio links at very low cost



Can we follow ?Can we follow ?

Early irradiationEarly irradiation
results with 130 nmresults with 130 nm
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2003 Test run2003 Test run

Run options:
6 levels of metal (4 
thin; 2 thick)
Mimcap
Op resistors
All transistors:

all Vts
all oxide 
thicknesses

Designs with linear or 
Enclosed transistors

Contact author or F. Faccio /PH for 
detailed results
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130 nm Preliminary Results130 nm Preliminary Results

TID
Enclosed transistors are very good
Linear transistors also look very promising with minor 
weaknesses
No guard-ring needed
Thick Ox gates (IO devices) are sensitive: use carefully!

SEEs
Sensitive charge smaller, higher SEU sensitivity
NB: without enclosed transistors, error rates can be 
considerably higher than for present 0.25µm designs
SEL not observed and not expected to be a crucial issue 
for our applications (careful: design-dependent 
sensitivity)



If we embark beyond 130 nm, If we embark beyond 130 nm, 
what are the difficulties ?what are the difficulties ?
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The bad news!The bad news!

Technical
Some CMOS advantages are disappearing
Complex modeling
Analog becoming more and more painful
Digital and wiring complexities
12” vs. 8” wafers (instrumentation cost)

Cost
Much Higher NRE
Business for HEP is exponentially decreasing for 
modern fabs
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Problems with DSMProblems with DSM

New high K dielectric 
are needed to cope 
with gate leakage 
problem

leakage current 
increases very fast

New simulation models
“Good-bye to old MOS 
devices, gate current 
must be included”

45 nm

65 nm

90 nm
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Problems with DSMProblems with DSM

2.0 GHz

4 GHz

1.2 GHz

1.5 GHz

Speed

50  W62 mm2

58 M
90 nm 
SOI

Power 
970
IBM

112 
mm2

90 nmX86
Intel

23 W206 
mm2

.13 umSparc
Sun

10% of 
power in 
leakage

160 W389 
mm2
276 M

.13 µm 
SOI

Power5
IBM

CommentsPowerArea / 
# 

devices

Tech

Microprocessors presented at ISSCC2004
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90 nm metalization

Problems with DSMProblems with DSM

0.5 um metalization
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Cost comparisonCost comparison

Kind permission from: M. Rieger, Avant Corp.
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Production vs. designProduction vs. design
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Cost model Cost model (take with a grain of salt)(take with a grain of salt)
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……and don’t forgetand don’t forget

Design cost is roughly same as wafer cost 
for up to 100K parts in 0.25 µm
Investment for becoming “proficient” is 
very high and should be accounted fairly

ASIC designer should NOT be recycled to other 
electronics jobs

Packaging can be as expensive as silicon
Testing takes always 5x more than 
foreseen
Users tend to neglect issue of spare parts
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Key areasKey areas

Given the increasing costs of ASICs fabrication, 
we may have to limit the future developments to 
only those parts with really high volume

Trackers
Calorimeters
Timing systems
Any high volume component in machine ?

Too many low volume designs performed in our 
community
Investment in “generic” ASICs (remember the 
74xx or LMxx series?) should be gratified and 
rewarded by the community !
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ConclusionsConclusions

Microelectronics is for HEP of the future 
what photographic emulsions and bubble 
chambers have been in the past
Technology will unquestionably be ready and 
available to offer another quantum step in 
instrumentation for physics

Huge opportunities are open to creative people

Success will depend on our capability to:
Master technology
Manage risks and costs
Manage our own organization


