disentangling forward physics

RHIC-spin: thanks Steve Heppelmann, 1990

The meeting will discuss the opportunies to make decisive measurements in the forward region at RHIC and LHC

What is Observable?

Hard scattering measures this density matrix

Forward scattering measures these density matrices...

No classical distributions can do the same job

Meanwhile experimenters cut on classical probability...as in 1904

Theory, which suggests interesting signals, ought to play an equally profound role in directing how to make the cuts.

It is always more efficient to cut probability on eigenstates

- Seek special states $\mid \omega>$ so that

$$
\begin{aligned}
\mathrm{P}(\omega)= & \langle\omega| \rho|\omega\rangle \\
& \langle\omega| \omega>
\end{aligned} \max
$$

QuickTime ${ }^{\text {TM }}$ alld a
TIFF (LZW) decompressor
are needed to see this picture.

Constructing the density matrix....a la roulette

- Basis $1=\left|\mathrm{k}_{1}>, 2=\left|\mathrm{k}_{1}, \mathrm{k}_{2}>\ldots \mathrm{N}=\right| \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \ldots \mathrm{k}_{\mathrm{N}}>\right.$
- In practice, bins of rapidity y_{k} and number N
- Event J is a vector $\mathrm{D}_{\mathrm{kN}}{ }^{\mathrm{J}}$

0	2	0	1	\ldots	\ldots	\ldots	0

Gentlemen and Ladies,

Consider Organization by Product Spaces

- |k>|N> means each k thing has N things
- $\mathrm{N}_{\max } \times \mathrm{k}_{\text {max }}$ things encoded; lossless
- An exponentially efficient encoding
- Collect same "objects" $\mid \alpha>$ and "sample history $\mathrm{s}_{\alpha}{ }^{\mathrm{J}}$ "

$$
\left.\mathrm{D}_{\mathrm{kN}}{ }^{\mathrm{J}}=\Sigma_{\alpha}|\alpha>| \mathrm{S}_{\alpha}^{\mathrm{J}}\right\rangle
$$

How to divide spaces

$$
\begin{aligned}
& 11>\left(\begin{array}{lll|l|l|l|l|l|l}
& 0 & 0 & 0 & 1 & \ldots & \ldots & & 0 \\
& & & 0 &
\end{array}\right) \\
& + \\
& 12>\left(\begin{array}{ll|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0
\end{array}\right) \\
& + \\
& \left\lvert\, 3>\left(\begin{array}{ll|l|l|l|l|l|l|l}
0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 1 & 0
\end{array}\right)\right.
\end{aligned}
$$

Normalize the sampling history of each subspace

...thus the braces are normalized

John's main formula

- Joint density matrix

$$
\rho_{\mathrm{NN}^{\prime}}{ }^{\mathrm{kk}}{ }^{\prime}=\sum_{\mathrm{J}} \quad \mathrm{D}_{\mathrm{kN}}{ }^{\mathrm{J}} \mathrm{D}_{\mathrm{k}^{\prime} \mathrm{N}^{\prime}}{ }^{\mathrm{J}}
$$

here $\mathrm{D}_{\mathrm{kN}}{ }^{\mathrm{J}}$ is produced by division of the data so as to represent the data record on a space of sums of products with consistent normalization conventions.

Division is the inverse of a direct product

how this kind of probability transforms

Let $|D\rangle$ be a data record divided by singular value decomposition into mutually exclusive categories $|\alpha\rangle$ and sample history $\left|s_{\alpha}\right\rangle$:

$$
\begin{equation*}
|D\rangle=\sum_{\alpha} \sqrt{P_{\alpha}}|\alpha\rangle\left|s_{\alpha}\right\rangle . \tag{1}
\end{equation*}
$$

In a different basis $|\tilde{\beta}\rangle$ use $|\alpha\rangle=\sum_{\beta}|\tilde{\beta}\rangle\langle\tilde{\beta} \mid \alpha\rangle=U_{\beta \alpha}|\alpha\rangle$ Provided the sample history is traced out, the record is statistically equivalent to one that actually measured $\tilde{\beta}$ objects.

But in that event there would be a transformed sample $\left|\tilde{s}_{\beta}\right\rangle$ and transformed probability \tilde{P}_{β} such that

$$
\begin{align*}
|D\rangle & =\sum_{\beta} \sqrt{\tilde{P}_{\beta}}|\tilde{\beta}\rangle\left|\tilde{s}_{\beta}\right\rangle \\
\sqrt{\tilde{P}_{\beta}}\left|\tilde{s}_{\beta}\right\rangle & =\sum_{\alpha} U_{\alpha \beta} \sqrt{P_{\alpha}}\left|s_{\alpha}\right\rangle \tag{2}
\end{align*}
$$

Given $\left|s_{\beta}\right\rangle$ normalized, we square to find

$$
\begin{equation*}
\tilde{P}_{\beta}=\sum_{\alpha} U_{\alpha \beta} \sqrt{P_{\alpha}} U_{\alpha \beta}^{\dagger} . \tag{3}
\end{equation*}
$$

This is just the diagonal expectation of the density matrix, $\rho=\sum_{\alpha} P_{\alpha}|\alpha\rangle\langle\alpha|$, namely

$$
\tilde{P}_{\beta}=\langle\tilde{\beta}| \rho|\tilde{\beta}\rangle .
$$

the probability rule of quantum theory.

definitions

- data record: categories, numbers, other orthogonal attributes plus sample history
- division: inverse of products, converts data record into products of parent vectors
- truncation: tracing out unwanted degrees of freedom, such as data history
- density matrix: a quadratic form made of the data record, the truncation of parent density matrices
... by construction
- Joint density matrix

$$
\rho_{\mathrm{NN}}{ }^{, k^{\prime}}
$$

- Truncated density matrix

$$
\rho^{k k^{\prime}=\operatorname{tr}_{N}}\left(\rho_{\mathrm{NN}^{\prime}} \mathrm{kk}^{\prime}\right)
$$

application: noise rejection cuts

- Almost all data is almost all noise
- Construct density matrix, optimal fit to noise (Karhunen-Loeve) ; diagonalize

space kept
Efficiency: Let J=1...10, 000, versus $\alpha=1$... 12 : get it?

Embed these 50 points in noise, local

 s@painoadefilter głobal |ngisenofreisqp
fourier power spectrum

Noise spectrum in density matrix basis is most compact noise segregation

filtered projection of the data

application: FNAL T926

- April ' 04 Radio-Cherenkov test beam with 100 GeV protons, $500 /$ bucket, 8 buckets, $53 \mathrm{MHz}, 3 \mathrm{~cm}$ antennas, coincidence + phototubes, 40 dB Gain, sampled at $1.6 \times 10^{-10} \mathrm{~s}, \mathrm{GHz}$ bandwidth, 20 mV rms
- A. Bean et al;
- MTEST fnal E. Ramberg
-S/N <<1 Noise dominated.
-Take average 400 runs -> gain 20 in S/N...not enough

Testbeam setup at MTest

a noisy average signal...

One event rms noise $\mathrm{O}(30 \mathrm{mV})$
Average ~ 400 events \rightarrow reduce uncorrelated noise rms noise $\mathrm{O}(1.5 \mathrm{mV})$

NEED SOMETHING MORE TO DIG OUT SIGNAL!

Back to forward multiparticle data...

conventional and unconventional

 forms of probabilityThe first few eigenvectors of ρ, called $\psi_{\alpha}(\mathrm{k})$

O
INVARIANT, INDEPENDENT
Probabilities $=\left|\Psi_{\alpha}(\mathrm{k})\right|^{2}$

here are the weighted eigen-distributions

- Encodings of spatial correlations in the
quantum system.

And spin, of course.

Theorists might do OK on the symmetries

Fiddle empirically to find U such that

$$
\rho^{\prime}=\mathrm{U} \rho \mathrm{U}^{*} \mathrm{~T}=\rho
$$

$\square \Psi$ Чоv $\eta \alpha \bar{\varpi} \varepsilon \alpha \sigma \psi \mu \mu \varepsilon \tau \rho \psi$
\square You have a symmetry

Summary overview

Classical probability inadequate; Partons are simple density matrices; Partons inadequate. (banks Rudy H wa) More general density matrices a proper framework; Must be experimentally driven !

Exists by construction.

No
models
today:
your data
will drive the
discovery

