RHIC – Spin

Jianwei Qiu Iowa State University

Workshop on Forward Physics at RHIC and LHC October 21 - 23, 2004 University of Kansas, Lawrence, KS

Outline

RHIC - The machine

□ Polarized parton distribution functions (PDF's)

\Box Spin – $\frac{1}{2}$ sum rule

□ What a RHIC spin program can achieve?

□ Beyond the PDF's – Single spin asymmetries

□ Summary and outlook

Relativistic Heavy Ion Collider

October 22, 2004

Polarized parton distributions

□ Longitudinally polarized nucleon:

$$\Delta q(x) = \left| \xrightarrow{P, +} \underbrace{X}_{0}^{xP} \right|^{2} - \left| \xrightarrow{P, +} \underbrace{Y}_{0}^{xP} \right|^{2}$$
$$\Delta g(x) = \left| \xrightarrow{P, +} \underbrace{Y}_{0}^{xP} \underbrace{Y}_{0}^{+} \right|^{2} - \left| \xrightarrow{P, +} \underbrace{Y}_{0}^{xP} \underbrace{Y}_{0}^{-} \right|^{2}$$

with the parton's transverse momentum integrated

□ Transversely polarized nucleon:

$$\delta q(x) = \left| \underbrace{\xrightarrow{P,\uparrow}}_{X} \underbrace{\xrightarrow{xP}}_{X} \right|^{2} - \left| \underbrace{\xrightarrow{P,\uparrow}}_{X} \underbrace{\xrightarrow{xP}}_{X} \right|^{2}$$

unpolarized parton distribution:

$$q(x) = \left| \underbrace{\xrightarrow{P,+}}_{X} \right|^{2} + \left| \underbrace{\xrightarrow{P,+}}_{X} \right|^{2} \left| \underbrace{\xrightarrow{P,+}}_{X} \right|^{2}$$

October 22, 2004

Polarized parton distributions - II

 \Box Current knowledge of Δf exclusively from low energy DIS:

October 22, 2004

NLO QCD fit: Glück, Reya, Vogelsang, MS (2000 update)

Spin – $\frac{1}{2}$ sum rule

□ First moment of polarized parton distribution:

$$\Delta f \equiv \int_{0}^{1} dx \,\Delta f(x)$$

= helicity carried by the parton of flavor **f**

Quark spin contribution to proton's spin:

$$\frac{1}{2}\Delta\Sigma \equiv \frac{1}{2} \left[\Delta U + \Delta \bar{U} + \Delta D + \Delta \bar{D} + \Delta S + \Delta \bar{S} \right]$$
$$\frac{1}{2}\Delta\Sigma \approx 0.08 \pm 0.04 \quad \ll \frac{1}{2} \quad \text{"spin crisis"}$$

D Nucleon spin $-\frac{1}{2}$ sum rule:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

What a RHIC spin program can do?

□ Measure polarized parton distributions:

- Many more physical processes (or probes)
- wider range of x and Q
- Better quark flavor separation
- Direct information on polarized gluon distribution
- **Check the universality of the parton distributions**
 - Test of the QCD factorization theorem
- □ Asymmetries with transversely polarized beams
 - ***** Measure the transversity distributions: $\delta q(x)$
 - ***** Go beyond the collinear factorization:
 - multi-parton correlation, Collins and Sivers functions, ...

□ Test QCD dynamics in its spin sector

Probes for polarized PDFs

Gluon distribution enters at the Leading Order (LO):

prompt photons

heavy quarks

reaction	LO subprocesses	partons probed	x-range	
pp ightarrow jets X	$q\bar{q}, qq, qg, gg \rightarrow \mathrm{jet} X$	Δq , Δg	$x\gtrsim 0.03$	
$pp ightarrow \pi X$	$q\bar{q}, qq, qg, gg \rightarrow \pi X$	Δq , Δg	$x\gtrsim 0.03$	
$pp ightarrow \gamma X$	$qg ightarrow q\gamma, q ar q ightarrow g\gamma$	Δg	$x\gtrsim 0.03$	
pp ightarrow Q ar Q X	gg ightarrow Q ar Q, $q ar q ightarrow Q ar Q$	Δg	$x\gtrsim 0.01$	
$pp ightarrow W^{\pm}X$	$q\bar{q}' \rightarrow W^{\pm}$	Δu , $\Delta \bar{u}$, Δd , $\Delta \bar{d}$	$x\gtrsim 0.06$	

Sensitivity on ∆g

\Box Predictions for very different Δg :

First results on **A**_{LL} by PHENIX

trend for $A_{\rm LL} < 0$ at small p_T contrary to expectations

B. Jäger et al. Phys. Rev. Lett. 92, 121803 (2004)

Is it possible to have a negative **A**_{LL}?

□ Un-polarized cross section is positive definite

- Need a negative polarized cross section: $A_{LL} = \frac{\Delta \sigma}{\sigma} < 0$
- □ Factorized cross section:

$$\frac{d\Delta\sigma^{\vec{p}\vec{p}\to\pi X}}{dp_{T}d\eta} = \sum_{abc} \int dx_{a} \, dx_{b} \, dz_{c} \, \Delta f_{a}(x_{a},\mu_{f}) \, \Delta f_{b}(x_{b},\mu_{f}) \, D_{c}^{\pi}(z_{c},\mu_{f}')$$
$$\times \frac{d\Delta\hat{\sigma}^{ab\to cX'}}{dp_{T}d\eta}(x_{a}P_{a},x_{b}P_{b},P^{\pi}/z_{c},\mu_{f},\mu_{f}',\mu_{r}) + \mathcal{O}(\frac{\lambda}{p_{T}})^{n}$$

□ Negative polarized cross section requires:

- Negative polarized parton distributions
- Negative polarized partonic cross section

The answer is YES, in principle

How likely to have a negative A_{LL}?

B. Jäger *et al.* Phys. Rev. Lett. **92**, 121803 (2004) **Partonic asymmetries:**

Need more measurements

 $\Box \pi^0$ at different rapidity:

At large rapidity, **qg** subprocess becomes more important

 $\boldsymbol{\textbf{ \diamond qg}}$ subprocess is sensitive to the sign of $\Delta \boldsymbol{g}$

 $\Box \pi^+$ or π^- production:

✤ More sensitive to ∆g because of the differences in fragmentation functions

Other observables:

Direct photon dominated by qg Compton subprocess

\therefore Low mass Drell-Yan at $p_T > Q/2$

٠...

High p_T Jets

\Box Sensitive to gluon polarization Δg :

But, not sensitive to the sign of Δg (gg sub. dominates)

Figures taken from Stratmann's talk at BNL Spin Summer School

Direct photons

 \Box Sensitive to gluon polarization Δg and its sign :

Flavor separation – A_L

 \Box Take advantage of the pure V-A interaction for W^{\pm}

 $A_L^{W^+} \approx \frac{\Delta u(x_1) \, \bar{d}(x_2) - \Delta \bar{d}(x_1) \, u(x_2)}{u(x_1) \, \bar{d}(x_2) + \bar{d}(x_1) \, u(x_2)}$ $x_1 = \frac{M_W}{\sqrt{s}} \, e^{+y}, \ x_2 = \frac{M_W}{\sqrt{s}} \, e^{-y}$

- ★ y-dependence to separate
 ∆u from ∆d
- Detector issues:

missing ET cannot be reconstructed

- Get y(W) only from the y of the charged lepton
 - NLO lepton-level MC available (Nadolsky, Yuan)

Transversity distribution – $\delta q(x)$

Ralston, Soper; Artru, Mekhfi; Jaffe, Ji

□ Rotate the beam polarization by 90[°] :

 $\delta q(x) = \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) = \mathbf{Chiral-odd helicity-flip density}$

Cannot be derived from knowing q(x) and ∆q(x) because boosts and rotations do not commute

- **Soffer inequality :** $|\delta q(x)| \leq \frac{1}{2} \left[q(x) + \Delta q(x)\right]$
- □ Require two of these for physical observables: A_{TT}
- **Drell-Yan :** Ralston & Soper, Nucl. Phys. B152 (1979) 109; ...

$$A_{TT} = \frac{\sum_{q} e_{q}^{2} \,\delta q(x_{1}, M) \delta \bar{q}(x_{2}, M) + (1 \leftrightarrow 2)}{\sum_{q} e_{q}^{2} \,q(x_{1}, M) \bar{q}(x_{2}, M) + (1 \leftrightarrow 2)} \,\hat{a}_{TT}$$

Expect
$$A_{TT} \sim 1 - 2 \%$$

Single transverse spin asymmetry – A_{N}

process – only one hadron is transversely polarized:

 $A(p, \vec{s_T}) + B(p') \rightarrow C(l) + X$ with C '=' high- $p_T \pi, \gamma, \ldots$

Beyond the collinear twist-2 formalism

□ Twist-3 contribution in collinear factorization

– leading corrections from parton correlation (minimal approach)

\Box Effect of non-vanish parton k_T (when $k_T \sim p_T$):

$$A_N \propto \frac{1}{S} \mathcal{E}^{p_A p_B s_T p_T} \frac{1}{M} f^{\perp}(x) = \underbrace{\frac{p_T}{M}}_{M}$$

M = Non-perturbative scale, e.g., di-quark mass, ...

What is the **T**⁽³⁾(*x*)?

D Twist-3 correlation $T_F(x, x)$:

$$T_F(x,x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-}$$
$$\times \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\int dy_2^- \epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

Twist-2 quark distribution:

$$q(x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-} \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

T_F Represents a fundamental quantum correlation between quark and gluon inside a hadron

change of transverse momentum

$$\frac{d}{dt}p_2' = e(\vec{v}' \times \vec{B})_2 = -ev_3B_1 = ev_3F_{23}$$

in the c.m. frame

$$(m, \vec{0}) \to \bar{n} = (1, 0, 0_T), \quad (1, -\hat{z}) \to n = (0, 1, 0_T)$$

$$\implies \frac{d}{dt}p'_2 = e \,\epsilon^{s_T \sigma n \bar{n}} \, F_{\sigma}^{\ +}$$

– total change: $\Delta p_2' = e \int dy^- \epsilon^{s_T \sigma n \bar{n}} \, F_\sigma^{\,+}(y^-)$

Model for $T_F(x,x)$

- T_F (x,x) tells us something about quark's transverse motion in a transversely polarized hadron
- It is non-perturbative, has unknown x-dependence

$$T_F(x,x) \propto \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\int dy_2^- \epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

♦ Model for $T_F(x, x)$ of quark flavor *a*:

$$T_{F_a}(x,x) \equiv \kappa_a \lambda q_a(x)$$
with $\kappa_u = +1$ and $k_d = -1$ for proton
Fitting parameter $\lambda \sim O(\Lambda_{QCD})$

$$A_N \propto \left(\frac{\ell_{\perp}}{-u}\right) \frac{n}{1-x}$$
if $T_F(x,x) \propto q(x) \propto (1-x)^n$

Numerical results – (II)

(compare apples with oranges)

Numerical results – (IV) (compare apples with oranges)

October 22, 2004

Sivers' functions

Sivers' functions are connected to a polarized hadron beam

Sivers' functions are T- odd, but do not need another T- odd function to produce nonvanish asymmetries – the extracted proportional factor is T- odd, proportional to A_N

* Polarized SIDIS cross section: $\Delta \sigma(x, Q, p_{\perp}) \propto [q(x, k_{\perp}, \vec{s}_{\perp}) - q(x, k_{\perp}, -\vec{s}_{\perp})] \otimes D(z)$ $\propto \left(\varepsilon_{\mu\nu\rho\sigma} P^{\mu} n^{\nu} k_{\perp}^{\rho} s_{\perp}^{\sigma} \right) f_{1T}^{\perp}(x) \otimes D(z)$

Collins' functions

Collins' functions: $H_1^{\perp}(x)$

$$D(z,k_{\perp},\vec{s}_{\perp}) + D(x,k_{\perp},-\vec{s}_{\perp}) = H_1^{\perp}(z) \ \sigma_{\mu\nu} \frac{k_{\perp}^{\mu} \overline{n}^{\nu}}{M}$$

Collins' functions are connected to the unpolarized Fragmentation contributions to a hadron

Collins' functions are T- odd, need another T- odd function to produce nonvanish asymmetries

Polarized SIDIS cross section:

$$\Delta \sigma(x, Q, p_{\perp}) \propto \delta q(x, \vec{s}_{\perp}) \otimes [D(z, k_{\perp}, \vec{s}_{\perp}) + D(z, k_{\perp}, -\vec{s}_{\perp})]$$

$$\propto \left(\sigma_{\mu\nu} k_{\perp}^{\mu} \overline{n}^{\nu}\right) \delta q(x, \vec{s}_{\perp}) \otimes H_{1}^{\perp}(z)$$

Summary and outlook

□ The machine – running schedule (STAR):

pp Run	2002	2003	2004	2005 Expected	> 2006 LongTermGoals	
CM Energy	200 GeV				200 GeV	500 GeV
${<}\mathbf{P}_{\mathrm{b}}{>}$ and direction at STAR	0.15 T	0.3 T/L	0.4 L	0.45 L/T	0.7 L/T	0.7 L/T
L _{max} [10 ³⁰ s ⁻¹ cm ⁻²]	2	6	6	16	80	200
L _{int} [pb ⁻¹] at STAR	0.3	0.5 / 0.4	0.4	14 / 8	320	800

Joanna Kiryluk- ICHEP04

Measure polarized parton distributions, and
 test the twist-2 pQCD dynamics in the spin sector

Study multiple parton correlation functions, and QCD dynamics beyond the PDF's – the "probability distribution"

Backup transparencies

31

Asymmetries

□ Single longitudinal spin asymmetries:

$$A_L = \frac{\sigma_{\rightarrow} - \sigma_{\leftarrow}}{\sigma_{\rightarrow} + \sigma_{\leftarrow}} \equiv \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

Double longitudinal spin asymmetries:

$$A_{LL} = \frac{\sigma_{++} + \sigma_{--} - \sigma_{+-} - \sigma_{-+}}{\sigma_{++} + \sigma_{--} + \sigma_{+-} + \sigma_{-+}}$$

Reduce under parity to:

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

□ Single transverse spin asymmetries:

$$A_N = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

Double transverse spin asymmetries:

$$A_{TT} = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\uparrow\downarrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\uparrow\downarrow}}$$

Open questions and discussion

Dynamics for single transverse spin asymmetries:

- \Box Connection between the twist-3 and finite k_{T} approach?
- □ Transition between the k_T approach at low p_T and twist-3 mechanism at high p_T ?

Asymmetries vs absolute cross sections:

PQCD NLO formalism does not fit low energy π data!

K_T - Factorization

In q-P frame, if $k_T \sim p_T \ll Q$

***** we can neglect k^2 in partonic part

But, we cannot neglect

- $k_T \text{ in partonic part} k^{\mu} = xP^{\mu} + k_{\perp}^{\mu} + \frac{k_T^2}{2k \cdot n}n^{\mu}$
- □ One can define k_{T} -dependent and gauge invariant parton distributions \neq factorization
- Soft interaction between the hadrons can spoil factorization
- Sudakov resummation done in b-space, and need nonperturbative information for coming back to momentum space

If there is no K_T – factorization, how universal are Sivers and Collins functions?

- □ KT factorization in SIDIS and Drell-Yan might be a reasonable approximation due to a large scale Q and P_T ~ K_T << Q</p>
- □ It is very unlikely to have the K_T factorization in hadronic collisions when $P_T \sim K_T$ due to a lack of perturbative scale
- What these nonperturbative functions try to tell us?
- K_T dependent distributions do include information on power corrections in a twist expansion How much are not included in the K_T – distributions?

Initial success of RHIC pp runs

- $\Box \pi^0$ cross section measured over 8 order of magnitude [PRL 91, 241803 (2003)]
- Good agreement with NLO pQCD calculation at low p_{τ}
- □ Can be used in interpretation of spin-dependent results

9.6% normalization error not shown

