BRAHMS Meeting on Forward Physics at RHIC and LHC The University of Kansas, Lawrence, October 22nd 2004

Geometric scaling: Phenomenology vs. results from BK

Néstor Armesto

Department of Physics, Theory Division, CERN

- 1. Introduction.
- 2. Phenomenological analysis of geometric scaling (with C. A. Salgado and U. A. Wiedemann, hep-ph/0407018).
- 3. Features from the BK equation (with J. L. Albacete, J. G. Milhano, C. A. Salgado and U. A. Wiedemann, hep-ph/0408216).
- 4. Conclusions.

Geometric scaling: Phenomenology vs. results from BK – p.1

• Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi in $\ln Q^2$, Balistky-Fadin-Kuraev-Lipatov in $\ln (1/x)$.

• Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi in $\ln Q^2$, Balistky-Fadin-Kuraev-Lipatov in $\ln (1/x)$.

• First (twist-four) non-linear correction:

Gribov-Levin-Ryskin-Mueller-Qiu in $\ln Q^2$ (GLR, PR100(83)1; MQ, NPB268(86)427).

• Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi in $\ln Q^2$, Balistky-Fadin-Kuraev-Lipatov in $\ln (1/x)$.

• First (twist-four) non-linear correction:

Gribov-Levin-Ryskin-Mueller-Qiu in $\ln Q^2$ (GLR, PR100(83)1; MQ, NPB268(86)427).

• Non-linear, all-twist evolution equation in the saturation region: Balitsky-Kovchegov in $\ln (1/x)$ (B, NPB463(96)99; K, PRD60(99)034008).

Néstor Armesto

• Linear evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi in $\ln Q^2$, Balistky-Fadin-Kuraev-Lipatov in $\ln (1/x)$.

• First (twist-four) non-linear correction:

Gribov-Levin-Ryskin-Mueller-Qiu in $\ln Q^2$ (GLR, PR100(83)1; MQ, NPB268(86)427).

• Non-linear, all-twist evolution equation in the saturation region: Balitsky-Kovchegov in $\ln (1/x)$ (B, NPB463(96)99; K, PRD60(99)034008).

 $Y = \ln (x_0/x), \ \bar{\alpha}_s = \alpha_s N_c/\pi, \ y = \bar{\alpha}_s Y, \ r = x_1 - x_2, \ b = (x_1 + x_2)/2;$

 $Y = \ln (x_0/x), \ \bar{\alpha}_s = \alpha_s N_c/\pi, \ y = \bar{\alpha}_s Y, \ r = x_1 - x_2, \ b = (x_1 + x_2)/2;$

$$V_F(x_1, z_+ = 0) = \mathcal{P}e^{ig \int dz_- T^a A_a^+(x_1, z_-)};$$

$$N(x_1, x_2) = N_c^{-1} \left\langle \operatorname{tr} \left[1 - V_F^{\dagger}(x_1) V_F(x_2) \right] \right\rangle_{\operatorname{target}};$$

 $Y = \ln (x_0/x), \ \bar{\alpha}_s = \alpha_s N_c/\pi, \ y = \bar{\alpha}_s Y, \ r = x_1 - x_2, \ b = (x_1 + x_2)/2;$

$$V_F(x_1, z_+ = 0) = \mathcal{P}e^{ig \int dz_- T^a A_a^+(x_1, z_-)};$$

$$N(x_1, x_2) = N_c^{-1} \left\langle \operatorname{tr} \left[1 - V_F^{\dagger}(x_1) V_F(x_2) \right] \right\rangle_{\operatorname{target}};$$

$$\frac{\partial N(x_1, x_2)}{\partial Y} = \frac{\alpha_s N_c}{\pi} \int \frac{d^2 z}{2\pi} \frac{(x_1 - x_2)^2}{(x_1 - z)^2 (z - x_2)^2} \times [N(x_1, z) + N(z, x_2) - N(x_1, x_2)]$$

 $Y = \ln (x_0/x), \ \bar{\alpha}_s = \alpha_s N_c/\pi, \ y = \bar{\alpha}_s Y, \ r = x_1 - x_2, \ b = (x_1 + x_2)/2;$

$$V_F(x_1, z_+ = 0) = \mathcal{P}e^{ig \int dz_- T^a A_a^+(x_1, z_-)};$$

$$N(x_1, x_2) = N_c^{-1} \left\langle \operatorname{tr} \left[1 - V_F^{\dagger}(x_1) V_F(x_2) \right] \right\rangle_{\operatorname{target}};$$

$$\frac{\partial N(x_1, x_2)}{\partial Y} = \frac{\alpha_s N_c}{\pi} \int \frac{d^2 z}{2\pi} \frac{(x_1 - x_2)^2}{(x_1 - z)^2 (z - x_2)^2} \times [N(x_1, z) + N(z, x_2) - N(x_1, x_2) - N(x_1, z)N(z, x_2)].$$

 $Y = \ln(x_0/x), \ \bar{\alpha}_s = \alpha_s N_c/\pi, \ y = \bar{\alpha}_s Y, \ r = x_1 - x_2, \ b = (x_1 + x_2)/2;$

$$\mathbf{T} = (x_1, z_-) \qquad \mathbf{T} = ia \int dz_- T^a A^+(x_1, z_-)$$

 α_s fixed (LL); make it running, try modifications of the kernel to mimic NLL effects.

$$\frac{1}{1} (x_1, x_2) - \frac{1}{c} \left[\frac{1}{c} \frac{1}{v_F(x_1) v_F(x_2)} \right] /_{\text{target}},$$

$$\frac{\partial N(x_1, x_2)}{\partial Y} = \frac{\alpha_s N_c}{\pi} \int \frac{d^2 z}{2\pi} \frac{(x_1 - x_2)^2}{(x_1 - z)^2 (z - x_2)^2} \times [N(x_1, z) + N(z, x_2) - N(x_1, x_2) - N(x_1, z)N(z, x_2)].$$

A signal: BK evolution of Cronin

Evolution erases the Cronin effect present in the initial condition (AAKSW, PRL92(04)082001; BKW, PRD68(03)054009; KKT, PRD68(03)094013; KLM, PLB561(03)93) ⇒ disappearance at forward rapidities (BRAHMS Coll., nucl-ex/0403005).

A signal: BK evolution of Cronin

Evolution erases the Cronin effect present in the initial condition (AAKSW, PRL92(04)082001; BKW, PRD68(03)054009; KKT, PRD68(03)094013; KLM, PLB561(03)93) ⇒ disappearance at forward rapidities (BRAHMS Coll., nucl-ex/0403005).

• Uncertainties (fixed or running α_s in evolution, finite *E* effects (CT, hep-ph/0409269), isospin (GSV, hep-ph/0407201)) still large.

A signal: BK evolution of Cronin

Evolution erases the Cronin effect present in the initial condition (AAKSW, PRL92(04)082001; BKW, PRD68(03)054009; KKT, PRD68(03)094013; KLM, PLB561(03)93) ⇒ disappearance at forward rapidities (BRAHMS Coll., nucl-ex/0403005).

• Uncertainties (fixed or running α_s in evolution, finite *E* effects (CT, hep-ph/0409269), isospin (GSV, hep-ph/0407201)) still large.

A signal: BK evolution of Cronin

Evolution erases the Cronin effect present in the initial condition (AAKSW, PRL92(04)082001; BKW, PRD68(03)054009; KKT, PRD68(03)094013; KLM, PLB561(03)93) ⇒ disappearance at forward rapidities (BRAHMS Coll., nucl-ex/0403005).

• Uncertainties (fixed or running α_s in evolution, finite *E* effects (CT, hep-ph/0409269), isospin (GSV, hep-ph/0407201)) still large.

2. Phenomenological analysis of geometric scaling

(with C. A. Salgado and U. A. Wiedemann, hep-ph/0407018)

- Scaling in Ip and IA.
- Multiplicities in AA.
- Ratios at forward rapidities in pA.

Geometric scaling: Phenomenology vs. results from BK – p.5

• Geometric scaling in Ip collisions for $x \lesssim 0.01$ (SGBK, PRL86(01)596) strongly suggests saturation.

• Geometric scaling in Ip collisions for $x \lesssim 0.01$ (SGBK, PRL86(01)596) strongly suggests saturation.

• It is best discussed within the dipole model.

$$\sigma_{T,L}^{\gamma^*h}(x,Q^2) = \int d\mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 \underbrace{2 \int d\mathbf{b} \, N_h(\mathbf{r},x;\mathbf{b})}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x)} \cdot \underbrace{\frac{1}{\sigma_{\mathrm{dip}}^h(\mathbf{r},x;\mathbf{b})}}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x)} \cdot \underbrace{\frac{1}{\sigma_{\mathrm{dip}}^h(\mathbf{r},x;\mathbf{b})}}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x;\mathbf{b})} \cdot \underbrace{\frac{1}{\sigma_{\mathrm{dip}}^h(\mathbf{r},x;\mathbf{b})}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x;\mathbf{b})}}$$

• Geometric scaling in lp collisions for $x \lesssim 0.01$ (SGBK, PRL86(01)596) strongly suggests saturation.

• It is best discussed within the dipole model.

$$\sigma_{T,L}^{\gamma^*h}(x,Q^2) = \int d\mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 \underbrace{2 \int d\mathbf{b} \, N_h(\mathbf{r},x;\mathbf{b})}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x)} \cdot \underbrace{\mathbf{Scaling} \Longrightarrow N_h(\mathbf{r},x;\mathbf{b}) \equiv N(rQ_{\mathrm{s,p}}(x,\mathbf{b})); \quad \mathbf{\bar{b}} = \mathbf{b}/\sqrt{\pi R_h^2} \Longrightarrow$$

• Geometric scaling in lp collisions for $x \lesssim 0.01$ (SGBK, PRL86(01)596) strongly suggests saturation.

• It is best discussed within the dipole model.

$$\sigma_{T,L}^{\gamma^*h}(x,Q^2) = \int d\mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 \underbrace{2 \int d\mathbf{b} \, N_h(\mathbf{r},x;\mathbf{b})}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x)} \cdot \mathbf{s} \cdot \mathbf{s}$$

• Geometric scaling in lp collisions for $x \lesssim 0.01$ (SGBK, PRL86(01)596) strongly suggests saturation.

• It is best discussed within the dipole model.

$$\begin{split} \sigma_{T,L}^{\gamma^*h}(x,Q^2) &= \int d\mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 \underbrace{2 \int d\mathbf{b} \, N_h(\mathbf{r},x;\mathbf{b})}_{\sigma_{\mathrm{dip}}^h(\mathbf{r},x)} \\ & \underbrace{\mathrm{Scaling} \Longrightarrow}_{N_h}(\mathbf{r},x;\mathbf{b}) \equiv N(rQ_{\mathrm{s,p}}(x,\mathbf{b})); \quad \bar{\mathbf{b}} = \mathbf{b}/\sqrt{\pi R_h^2} \Longrightarrow \\ \sigma_{T,L}^{\gamma^*h}(x,Q^2) &= \pi R_h^2 \int d\mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 \ 2 \int d\bar{\mathbf{b}} \, N_h(rQ_{\mathrm{s,h}}(x,\bar{\mathbf{b}})) \,. \end{split}$$

$$|\Psi_{T,L}^{\gamma^*}|^2 \stackrel{m_f=0}{\equiv} Q^2 f(\mathbf{r}Q, z) \Longrightarrow \sigma_{T,L}^{\gamma^*h} \equiv g\left(\tau_h = \frac{Q^2}{Q_{\mathrm{s,h}}^2(x) \equiv \langle Q_{\mathrm{s,h}}^2(x, \bar{\mathbf{b}}) \rangle_{\bar{\mathbf{b}}}}\right)$$

Scaling in lp and lA (II)

10

 $\tau_{\rm h} = Q^2 / Q_{\rm s,h}^2$

• Geometric scaling and dimensional arguments lead to

$$\frac{dN_g^{AA}}{dY}\bigg|_{Y\sim 0} \propto Q_{\rm s,A}^2 \pi R_A^2.$$

• Geometric scaling and dimensional arguments lead to

$$\frac{dN_g^{AA}}{dY}\bigg|_{Y\sim 0} \propto Q_{\rm s,A}^2 \pi R_A^2.$$

• With $\lambda,~\delta$ determined from Ip, IA, $N_0=0.47,~N_{\rm part}~\propto~A,$ and using LPHD,

$$\frac{1}{N_{\text{part}}} \frac{dN^{AA}}{d\eta} \bigg|_{\eta \sim 0} = N_0 \sqrt{s^{\lambda}} N_{\text{part}}^{\frac{1-\delta}{3\delta}}.$$

• Geometric scaling and dimensional arguments lead to

$$\frac{dN_g^{AA}}{dY}\bigg|_{Y\sim 0} \propto Q_{\rm s,A}^2 \pi R_A^2.$$

• With λ , δ determined from Ip, IA, $N_0 = 0.47$, $N_{\rm part} \propto A$, and using LPHD,

Centrality and energy dependences factorize.

Data: PHOBOS, nucl-ex/0405027.

• Factorized ansatz with scaling gluon distribution $\phi_A \simeq \Phi = \sigma^{\gamma^* p}$.

• Factorized ansatz with scaling gluon distribution $\phi_A \simeq \Phi = \sigma^{\gamma^* p}$.

• Gluon distribution in the deuteron is taken $\phi_d \sim 1/k_t^n$, $n \gg 1$, and $N_{\text{coll}_1} = 13.6 \pm 0.3$, 7.9 ± 0.4 , $N_{\text{coll}_2} = 3.3 \pm 0.4$.

• Factorized ansatz with scaling gluon distribution $\phi_A \simeq \Phi = \sigma^{\gamma^* p}$.

• Gluon distribution in the deuteron is taken $\phi_d \sim 1/k_t^n$, $n \gg 1$, and $N_{\text{coll}_1} = 13.6 \pm 0.3$, 7.9 ± 0.4 , $N_{\text{coll}_2} = 3.3 \pm 0.4$.

•
$$\frac{dN_{c_1}^{dAu}}{N_{coll_1}d\eta d^2 p_t} \left/ \frac{dN_{c_2}^{dAu}}{N_{coll_2}d\eta d^2 p_t} \right.$$
$$\approx \frac{N_{coll_2}\phi_A(p_t/Q_{s,c_1})}{N_{coll_1}\phi_A(p_t/Q_{s,c_2})} \approx \frac{N_{coll_2}\Phi(\tau_{c_1})}{N_{coll_1}\Phi(\tau_{c_2})} \,.$$

Néstor Armesto

Néstor Armesto

 $\eta = 2.2$

n = 3.2

 $\eta = 0$

-n=5

4 4.5 5

 p_t (GeV)

Data: BRAHMS, nucl-ex/0403005.

3. Features from the BK equation

(with J. L. Albacete, J. G. Milhano, C. A. Salgado and U. A. Wiedemann, hep-ph/0408216)

• Scaling, $N(Y,r) \equiv N(\tau = rQ_s(Y))$ for $Y \gg 1$ (backup).

- Small *r* behavior (backup).
- Rapidity dependence of Q_s .
- Nuclear size dependence of Q_s .

Note: results not yet with *b*-dependence. We have examined values of *Y* and *A* from small to huge. Aim: study the transition to asymptotics.

Geometric scaling: Phenomenology vs. results from BK – p.10

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. - p.11

• $N(r = Q_s^{-1}(Y)) = 1/2$. For fixed α_s , $Q_s^2(Y) = Q_s^2(Y = 0) \exp[d\bar{\alpha}_s Y]$; $d \simeq 4.57$ (expected d = 4.88 (IIM, NPA708(02)327)).

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.11

• $N(r = Q_s^{-1}(Y)) = 1/2$. For fixed α_s , $Q_s^2(Y) = Q_s^2(Y = 0) \exp[d\bar{\alpha}_s Y]$; $d \simeq 4.57$ (expected d = 4.88 (IIM, NPA708(02)327)). • For running α_s , $Q_s^2(Y) = \Lambda^2 \exp[\Delta' \sqrt{Y + X}]$; $\Delta' \simeq 3.2$ (expected $\Delta' = 3.6$ (IIM, NPA708(02)327)).

• $N(r = Q_s^{-1}(Y)) = 1/2$. For fixed α_s , $Q_s^2(Y) = Q_s^2(Y = 0) \exp[d\bar{\alpha}_s Y]$; $d \simeq 4.57$ (expected d = 4.88 (IIM, NPA708(02)327)).

• For running α_s , $Q_s^2(Y) = \Lambda^2 \exp \left[\Delta' \sqrt{Y + X}\right]$; $\Delta' \simeq 3.2$ (expected $\Delta' = 3.6$ (IIM, NPA708(02)327)).

• Linear fit for running $\alpha_s \Longrightarrow d\bar{\alpha}_s \simeq 0.28$ for $Y \simeq 10$ (LGLM, NPA696(01)851; T, NPB648(03)293 // KMRS, hep-ph/0406135; KS, hep-ph/0408117; CLSV, hep-ph/0408333).

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.11

Nuclear size dependence of Q_s

70_Y

Nuclear size dependence of Q_s

• For fixed α_s , the initial A-dependence is preserved.

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.12

Nuclear size dependence of Q_s

• For fixed α_s , the initial A-dependence is preserved.

• For running α_s , the A-dependence vanishes with increasing Y:

$$\operatorname{n} \frac{Q_{sA}^2(Y)}{Q_{sp}^2(Y)} \simeq \frac{\ln^2 \left[Q_{sA}^2(Y=0)/\Lambda^2\right]}{2\sqrt{(\Delta')^2 Y}}$$

(LR, SJNP45(87)150; M, NPA724(03)223; RW, NPA739(04)183); $1/\sqrt{Y}$ for $Y, A \gg 1$.

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.12

• We have related lp, IA, AuAu and dAu using geometric scaling.

- We have related Ip, IA, AuAu and dAu using geometric scaling.
- We have investigated how solutions of BK go to the asymptotics.

- We have related Ip, IA, AuAu and dAu using geometric scaling.
- We have investigated how solutions of BK go to the asymptotics.
- Compared to BK for large Y (asymptotics where scaling holds):

	BK with fixed coupling	BK with running coupling	Phenomenology
	$(\alpha_s = 0.2 \div 0.4)$		
Y -dependence of Q_s	large	small	small
A -dependence of Q_s	large (MV)	small	large

- We have related Ip, IA, AuAu and dAu using geometric scaling.
- We have investigated how solutions of BK go to the asymptotics.
- Compared to BK for large Y (asymptotics where scaling holds):

	BK with fixed coupling	BK with running coupling	Phenomenology
	$(\alpha_s = 0.2 \div 0.4)$		
Y -dependence of Q_s	large	small	small
A -dependence of Q_s	large (MV)	small	large

• Theory: *b*-dependence (GBS, NPB668(03)345), corrections to BK (IMM, hep-ph/0410018), initial conditions? // factorization in AA? (B, hep-ph/0409314).

- We have related lp, IA, AuAu and dAu using geometric scaling.
- We have investigated how solutions of BK go to the asymptotics.
- Compared to BK for large Y (asymptotics where scaling holds):

	BK with fixed coupling	BK with running coupling	Phenomenology
	$(\alpha_s = 0.2 \div 0.4)$		
Y -dependence of Q_s	large	small	small
A -dependence of Q_s	large (MV)	small	large

• Theory: *b*-dependence (GBS, NPB668(03)345), corrections to BK (IMM, hep-ph/0410018), initial conditions? // factorization in AA? (B, hep-ph/0409314).

- To clarify the role of saturation (scaling): more data needed, e.g.
 - \rightarrow pp, pA and AA at 0 < y < 5 (Y-scan of Q_s^2).
 - \rightarrow pA with several A at b = 0 (A-scan of Q_s^2).
 - \rightarrow AA at different *b* (centrality evolution of multiplicities).
 - \rightarrow Correlations in pA for the same and different rapidities.

- We have related lp, IA, AuAu and dAu using geometric scaling.
- We have investigated how solutions of BK go to the asymptotics.
- Compared to BK for large Y (asymptotics where scaling holds):

	BK with fixed coupling	BK with running coupling	Phenomenology
	$(\alpha_s = 0.2 \div 0.4)$		
Y -dependence of Q_s	large	small	small
A -dependence of Q_s	large (MV)	small	large

• Theory: *b*-dependence (GBS, NPB668(03)345), corrections to BK (IMM, hep-ph/0410018), initial conditions? // factorization in AA? (B, hep-ph/0409314).

- To clarify the role of saturation (scaling): more data needed, e.g.
 - \rightarrow pp, pA and AA at 0 < y < 5 (Y-scan of Q_s^2).
 - \rightarrow pA with several A at b = 0 (A-scan of Q_s^2).
 - \rightarrow AA at different *b* (centrality evolution of multiplicities).
 - \rightarrow Correlations in pA for the same and different rapidities.

• LHC: small x available to check saturation in pp and pA, fulfilling the requirements: small x (coherence, high density), $(Q_s^2) \gg \Lambda_{\text{QCD}}^2$.

				- v -	
$p_t = 0.5~{ m GeV}$	$x_{1,2}^{y=0}$	$x_1^{y=3}$	$x_2^{y=3}$	$x_1^{y=5}$	$x_2^{y=5}$
200 GeV	$3 \cdot 10^{-3}$ (0.5)	$5 \cdot 10^{-2}$ (0.2)	10^{-4} (1.4)	0. 4 (0.1)	10^{-5} (2.7)
5.5 TeV	10^{-4} (1.4)	$2 \cdot 10^{-3}$ (0.6)	$5 \cdot 10^{-6}$ (3.26)	10^{-2} (0.4)	$6 \cdot 10^{-7}$ (6.0)

Geometric scaling: Phenomenology vs. results from BK. – p.13

• Factorized form $\frac{dN_g^{AB}}{dY d\mathbf{p}_t d\mathbf{b}} \propto \frac{\alpha_S}{\mathbf{p}_t^2}$ $\times \int d\mathbf{k} \ \phi_A(Y, \mathbf{k}^2, \mathbf{b}) \ \phi_B\left(Y, (\mathbf{k} - \mathbf{p}_t)^2, \mathbf{b}\right),$ $\phi_h = \int \frac{d\mathbf{r}}{2\pi r^2} \exp\{i\mathbf{r} \cdot \mathbf{k}\} N_h(\mathbf{r}, x; \mathbf{b}).$

- Factorized form $\frac{dN_g^{AB}}{dYd\mathbf{p}_t d\mathbf{b}} \propto \frac{\alpha_S}{\mathbf{p}_t^2}$ $\times \int d\mathbf{k} \ \phi_A(Y, \mathbf{k}^2, \mathbf{b}) \ \phi_B\left(Y, (\mathbf{k} - \mathbf{p}_t)^2, \mathbf{b}\right),$ $\phi_h = \int \frac{d\mathbf{r}}{2\pi r^2} \exp\{i\mathbf{r} \cdot \mathbf{k}\} N_h(\mathbf{r}, x; \mathbf{b}).$
- Geometric scaling $\phi_A(Y, \mathbf{k}^2, \mathbf{b}) \equiv \phi(\mathbf{k}^2/Q_{s,A}^2(Y, \mathbf{b})) \Longrightarrow$

• Factorized form $\frac{dN_g^{AB}}{dY d\mathbf{p}_t d\mathbf{b}} \propto \frac{\alpha_S}{\mathbf{p}_t^2}$ $\times \int d\mathbf{k} \ \phi_A(Y, \mathbf{k}^2, \mathbf{b}) \ \phi_B\left(Y, (\mathbf{k} - \mathbf{p}_t)^2, \mathbf{b}\right),$ $\phi_h = \int \frac{d\mathbf{r}}{2\pi r^2} \exp\{i\mathbf{r} \cdot \mathbf{k}\} N_h(\mathbf{r}, x; \mathbf{b}).$

• Geometric scaling $\phi_A(Y, \mathbf{k}^2, \mathbf{b}) \equiv \phi(\mathbf{k}^2/Q_{s,A}^2(Y, \mathbf{b})) \Longrightarrow$

• Factorized form $\frac{dN_g^{AB}}{dY d\mathbf{p}_t d\mathbf{b}} \propto \frac{\alpha_S}{\mathbf{p}_t^2}$ $\times \int d\mathbf{k} \ \phi_A(Y, \mathbf{k}^2, \mathbf{b}) \ \phi_B\left(Y, (\mathbf{k} - \mathbf{p}_t)^2, \mathbf{b}\right),$ $\phi_h = \int \frac{d\mathbf{r}}{2\pi r^2} \exp\{i\mathbf{r} \cdot \mathbf{k}\} N_h(\mathbf{r}, x; \mathbf{b}).$

• Geometric scaling $\phi_A(Y, \mathbf{k}^2, \mathbf{b}) \equiv \phi(\mathbf{k}^2/Q_{s,A}^2(Y, \mathbf{b})) \Longrightarrow$

$$\frac{dN_g^{AA}}{dY}\bigg|_{Y\sim 0} \propto Q_{\rm s,A}^2 \pi R_A^2 \times \int \frac{d\mathbf{s}}{\mathbf{s}^2} d\tau d\mathbf{\bar{b}} \underbrace{\phi(\tau^2) \phi\left((\tau-\mathbf{s})^2\right)}_{\rm requirement}.$$

• $\lambda = 0.288$, $Q_{\rm s,A}^2 \propto A^{1/3\delta}$, $\delta = 0.79 \pm 0.02$, $N_0 = 0.47$, $N_{\rm part} \propto A$, and LPHD,

$$\frac{1}{N_{\text{part}}} \frac{dN^{AA}}{d\eta} \bigg|_{\eta \sim 0} = N_0 \sqrt{s}^{\lambda} N_{\text{part}}^{\frac{1-\delta}{3\delta}} \,.$$

Scaling

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.15

Scaling

• Scaling $N(Y,r)\equiv N(\tau=rQ_s(Y))$ for $Y\gg 1$ both for fixed (AB, EPJC20(01)517; L, EPJC21(01)513) and running (B, PLB576(03)115) $\alpha_s.$

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.15

Scaling

• Scaling $N(Y,r) \equiv N(\tau = rQ_s(Y))$ for $Y \gg 1$ both for fixed (AB, EPJC20(01)517; L, EPJC21(01)513) and running (B, PLB576(03)115) α_s .

• Initial condition-independent: GBW, MV or AS $(1 - \exp[-(rQ_s)^c])$.

Scaling

• Scaling $N(Y,r) \equiv N(\tau = rQ_s(Y))$ for $Y \gg 1$ both for fixed (AB, EPJC20(01)517; L, EPJC21(01)513) and running (B, PLB576(03)115) α_s .

- Initial condition-independent: GBW, MV or AS $(1 \exp[-(rQ_s)^c])$.
- Little dependence on details of the scale to run α_s (external, internal) or modifications of the kernel (exponential damping, kinematical cuts (CLSV, hep-ph/0408333)) or on the value $\alpha_s(Q = 0)$ (fixed and running).

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.15

Small *r* **behavior**

 $1 - \gamma \equiv$ 'anomalous dimension'.

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.16

Small *r* **behavior**

• Fits to $a\tau^{2\gamma} (\ln \tau^2 + d)$, $\tau = rQ_s$, (MT, NPB640(02)331), in $10^{-5} < \tau < 10^{-1}$; $1 - \gamma \equiv$ 'anomalous dimension'.

• $Y \to \infty$: $\gamma \simeq 0.65$ for fixed (IIM, NPA708(02)327; AAKSW, PRL92(04)082001) and $\simeq 0.85$ for running, unexpected (B, PLB576(03)115).

Small *r* **behavior**

• Fits to $a\tau^{2\gamma} (\ln \tau^2 + d)$, $\tau = rQ_s$, (MT, NPB640(02)331), in $10^{-5} < \tau < 10^{-1}$; $1 - \gamma \equiv$ 'anomalous dimension'.

• $Y \to \infty$: $\gamma \simeq 0.65$ for fixed (IIM, NPA708(02)327; AAKSW, PRL92(04)082001) and $\simeq 0.85$ for running, unexpected (B, PLB576(03)115).

• Faster evolution for fixed than for running; for AS with c = 0.84, it takes a very long Y.

Geometric Scaling: Phenomenology vs. results from BK: 3. Features from BK. – p.16