Forward Physics at RHIC: Onset of Saturation in CGC

Kirill Tuchin

October 22, 2004

Gluon production in pA scattering at small \boldsymbol{x}

In a nucleus rest frame

At small Bjorken x hard processes develop over large "coherence length" l_c (loffe, 69)

$$l_c = \frac{1}{E_{qg} - E_q} \simeq \frac{1}{M x} \gg R_A$$

Two separated in time stages of a gluon production at low x:

- 1. Emission of a low x gluon $q \rightarrow qg$ over time l_c/c at a given impact parameter b_t .
- 2. Instantaneous interaction of a gluon with a nucleus with amplitude $N_G(r_t, b_t, x)$.

Saturation at low x

Glauber formula = approximation of independent scatterings:

$$N_G(r_t, b_t, y) = 1 - e^{-r_t^2 Q_s^2/4}$$

with rapidity $y = \ln(1/x)$

One-nucleon scattering amplitude at given b_t :

$$N_G^{(1)} = r_t^2 \pi^2 \alpha_s \rho T(b_t) x G(r_t, x) / (2 C_F)$$

A Saturation: at $r_t > 1/Q_s \Rightarrow N_G = 1$ (independent of r_t , x, b_t).

The saturation scale: $Q_s^2 \propto A^{1/3}$. For a big nucleus $Q_s \gg \Lambda_{\rm QCD} \Rightarrow \alpha_s(Q_s^2) \ll 1$ This is a *quasi-classical* picture since N_G is given by the tree-level graphs.

Classical limit of QCD

$$S_{\rm QCD} = \int d^4x \sum_q \bar{q}(x)(i\gamma^\mu D_\mu - m_q)q(x) - \frac{1}{4g^2} {\rm tr}\,\tilde{G}_{\mu\nu}(x)\,\tilde{G}^{\mu\nu}(x)$$
 with $A_\mu = \frac{1}{g}\tilde{A}_\mu$.

The classical limit = high occupation numbers. At small x it implies that $S_{\rm YM} \gg 1$.

It corresponds to small coupling constant $\alpha_s \ll 1$ and strong fields $\tilde{A} \sim 1 \Rightarrow$

$$g \ll 1$$
, $A_{\mu} \sim \frac{1}{g} Q_s \gg 1$

Color Glass Condensate = strong color field + small coupling

(Gribov, Levin, Ryskin, 82; Mueller, Qiu, 86, McLerran, Venugopalan, 94)

Gluon distribution

Unintegrated gluon distribution

$$\phi(x,\underline{k}) = \frac{dxG(x,\underline{k})}{d^2k} = \frac{C_F}{\alpha_s(2\pi)^3} \int d^2b \, d^2r \, e^{-i\underline{k}\cdot\underline{r}} \, \nabla_r^2 \, N_G(\underline{r},\underline{b},x)$$

Gluon production cross section in a quasi-classical approximation (Yu. Kovchegov, A. Mueller, 98)

$$\frac{d\sigma^{pA}}{d^2k\,dy} = \frac{2\alpha_s}{C_F}\frac{1}{\underline{k}^2}\int d^2q\,\phi_p(\underline{q})\,\phi_A(\underline{k}-\underline{q})$$

 \clubsuit In general $\phi(x, \underline{k})$ is not a universal function :(

Gluon distribution

Unintegrated gluon distribution

$$\phi(x,\underline{k}) = \frac{dxG(x,\underline{k})}{d^2k} = \frac{C_F}{\alpha_s(2\pi)^3} \int d^2b \, d^2r \, e^{-i\underline{k}\cdot\underline{r}} \, \nabla_r^2 \, N_G(\underline{r},\underline{b},x)$$

Gluon production cross section in a quasi-classical approximation (Yu. Kovchegov, A. Mueller, 98)

$$\frac{d\sigma^{pA}}{d^2k\,dy} = \frac{2\alpha_s}{C_F}\frac{1}{\underline{k}^2}\int d^2q\,\phi_p(\underline{q},x_p)\,\phi_A(\underline{k}-\underline{q},x_A)$$

A In general $\phi(x, \underline{k})$ is not a universal function :(However it is the same for gluon production in pA and for DIS :)

Cronin effect

Using a simple Glauber model $N_G(\underline{r}, \underline{b}, x) = 1 - \exp \frac{Q_s^2 r^2}{4}$ we get

Quasi-classical parton production leads to Cronin effect!

(D. Kharzeev, Yu. Kovchegov, K.T., 03; R. Baier, A. Kovner, U. Wiedemann, 03; B. Kopeliovich, J. Nemchik, A. Schafer, A. Tarasov, 02; A. Accardi, M.Gyulassy, 03; I. Vitev, 03)

Cronin peak

The position of the Cronin maximum is given by

 $k_T \sim Q_s \sim A^{1/6}$

since $Q_s^2 \sim A^{1/3}$.

$$R^{pA} = 1 + \frac{3}{2} \frac{Q_s^2}{k^2} \ln \frac{k^2}{\Lambda^2} + \dots, \quad k \to \infty$$

 \heartsuit Using the formula above we see that the height of the Cronin peak is

$$R^{pA}(k_T = Q_s) \sim \ln Q_s \sim \ln A$$

The height and position of the Cronin maximum are *increasing* functions of centrality!

Quantum evolution

Each emitted gluon contributes

$$\alpha_s \, \ln \frac{1}{x} \, \sim 1$$

All gluons give

$$\sum_{n} \frac{1}{n!} (\alpha_s \, \ln \frac{1}{x})^n \sim x^{-\lambda}$$

Therefore, the saturation scale increases with 1/x as:

$$Q_s^2 \propto A^{1/3} x^{-\lambda}$$

Geometric scaling of gluon distribution

 $Q_s(x)$ is the only scale at low $x \Rightarrow \phi(x, \underline{k})$ is a function of only one variable $k/Q_s(x)$.

The geometric scaling holds as long as the BFKL evolution dominates over DGLAP one:

$$\alpha_s \log Q_s^2 / \Lambda^2 \sim \alpha_s y > \alpha_s \log k_t^2 / Q_s^2$$

$$k_t < k_{\text{geom}} = Q_s^2(x) / \Lambda$$

(Levin, K.T., 01; Iancu, McLerran, Itakura, 02).

Experimental signatures of the Geometric Scaling

• $\sigma_{\text{tot}}^{DIS}(x, Q^2) = f(Q^2/Q_s^2(x))$

Geometric scaling in $\gamma^* p$ at x < 0.01 (HERA)

(Stasto, Golec-Biernat, Kwiecinski, 2000)

No geometric scaling in $\gamma^* p$ at x > 0.01 (HERA)

(Stasto, Golec-Biernat, Kwiecinski, 2000)

Experimental signatures of Geometric Scaling

•
$$\sigma_{\rm tot}^{DIS}(x,Q^2) = f(Q^2/Q_s^2(x))$$

•
$$\frac{dN^{AA}}{dy} \propto \frac{S_A Q_s^2(x)}{\alpha_s(Q_s^2(x))} \propto A \log A \Rightarrow \frac{dN^{AA}}{A dy} \propto \log A$$
 (Kharzeev, Levin, 01)
in pQCD: $\propto A^{1/3}$

Geometric scaling in AA (RHIC)

(Kharzeev, Levin, 2000)

Anomalous dimension γ of gluon distribution

$$\phi_A(x,q_t) \propto S_A \left(\frac{Q_s^2}{q_t^2}\right)^{\gamma}$$

• pQCD regime $q_t \gg k_{\text{geom}}$:

$$\gamma \to 1 \Rightarrow \phi_A(x, q_t) \propto S_A \frac{Q_s^2}{q_t^2} \sim A$$

• black disk regime (saturation), $q_t \ll Q_s(x)$:

$$\gamma \to 0 \Rightarrow \phi_A(x, q_t) \propto S_A \sim A^{2/3}$$

Anomalous dimension γ of gluon distribution

• extended geometric scaling region $Q_s(x) \ll q_t \ll k_{\text{geom}}$:

$$\gamma \simeq \frac{1}{2} \Rightarrow \phi_A(x, q_t) \propto S_A \frac{Q_s}{q_t} \sim A^{5/6}$$

Nuclear gluon distribution is suppressed!

$$\frac{\phi_A(x,k_t)}{A\,\phi_p(x,k_t)} < 1$$

Effect of quantum evolution on particle production

$$\frac{d\sigma^{pA}}{d^2k\,dy} = \frac{2\,\alpha_s}{C_F} \frac{1}{k^2} \int d^2q\,\phi_p(q,Y-y) \underbrace{\phi_A(k-q,Y)}_{suppressed \ at \ x \to 0}$$

At forward rapidities R^{pA} is decreasing function of rapidity and centrality.

(Kharzeev, McLerran, Levin,02; Kharzeev, Kovchegov, K.T.,03; Albacete et. al. ,03; Baier et. al. ,03)

Valence quark production in a quasi-classical approximation

Valence quark production cross section (A. Dumitru, J. Jalilian-Marian,02)

$$\frac{d\sigma_Q^{dA}}{d^2k} = \frac{S_A}{(2\pi)^2} \int d^2r \, e^{i\underline{k}\cdot\underline{r}} \, [2 - N_Q(r_t, y)],$$

with $N_Q(r_t, y)$ is the quark dipole–nucleus forward scattering amplitude

$$N_Q(r_t, y) = 1 - e^{-C_F r_t^2 Q_s^2 / 4 N_c}$$

Valence quarks dominate in the fragmentation regions.

Quantitative analysis

See details in D. Kharzeev, Yu. Kovchegov, K.T., hep-ph/0405045

• we modeled the gluon dipole scattering amplitude as

$$N_G(r,y) = 1 - \exp\left[-\frac{1}{4}(r^2 Q_s^2)^{\gamma(y,r)}\right],$$

where the anomalous dimension γ is

$$\gamma(y,r) = \frac{1}{2} \left(1 + \frac{\xi(y,r)}{\xi(y,r) + \sqrt{2\,\xi(y,r)} + 7\zeta(3)\,c} \right)$$

with

$$\xi(y,r) = \frac{\ln\left[1/(r^2 Q_{s0}^2)\right]}{(\lambda/2)(y-y_0)}$$

Quantitative analysis

At
$$r \to 0$$
, y fixed: $\gamma \to 1$.

 \blacklozenge At $y \to \infty$, r fixed: $\gamma \to 1/2$.

• The saturation scale is fixed by DIS data

$$Q_s^2 = 0.13 \,\mathrm{GeV}^2 \, e^{\lambda \, y} \, N_{\mathrm{coll}}$$

with $\lambda = 0.3$

• High x tail of quark distribution is described by the factor $(1 - x)^3 x^{0.5}$ following from the quark sum rules and the leading Regge trajectory.

• High x tail of gluon distribution is described by the factor $(1-x)^4$.

Quantitative analysis

• High x part of the anomalous dimension is described by (Ellis, Kunszt, Levin, 94)

$$\gamma(\omega) = \alpha_s \left(\frac{1}{\omega} - 1\right)$$

• We use fragmentation functions of (Kniehl, Kramer, Potter, 01)

• The only fitted parameters are:

1) $y_0 = 0.6$ is the rapidity at which quantum evolution sets in;

2) c = 4 is the coefficient in γ describing details of transition between classical regime $\gamma = 1$ and quantum regime $\gamma = 1/2$.

Charged particle production (BRAHMS)

Central events: $b \approx 3$ fm. Semi-central: $b \approx 5$ fm. Perepheral: $b \approx 7$ fm.

Charged particle production (BRAHMS)

• Strong chromoelectric field produces $q\bar{q}$ pairs from vacuum when $E > m^2/g$.

• Strong chromoelectric field produces $q\bar{q}$ pairs from vacuum when $E > m^2/g$.

• In Color Glass Condensate: $E \sim Q_s^2/g$.

• Strong chromoelectric field produces $q\bar{q}$ pairs from vacuum when $E > m^2/g$.

• In Color Glass Condensate: $E \sim Q_s^2/g$.

Therefore, pair production is important when

$$Q_s > m$$

The production pattern of heavy and light quarks is the same in the saturation region! (Kharzeev, K.T., 03)

• Strong chromoelectric field produces $q\bar{q}$ pairs from vacuum when $E > m^2/g$.

• In Color Glass Condensate: $E \sim Q_s^2/g$.

Therefore, pair production is important when

$$Q_s > m$$

The production pattern of heavy and light quarks is the same in the saturation region! (Kharzeev, K.T., 03)

At RHIC: $m_c \approx 1.3$ GeV vs $Q_s \approx 1.4 e^{0.15 y}$ GeV (at b = 0). Therefore we expect suppression at $y \gg 1$.

• Strong chromoelectric field produces $q\bar{q}$ pairs from vacuum when $E > m^2/g$.

• In Color Glass Condensate: $E \sim Q_s^2/g$.

Therefore, pair production is important when

$$Q_s > m$$

The production pattern of heavy and light quarks is the same in the saturation region! (Kharzeev, K.T., 03)

At RHIC: $m_c \approx 1.3$ GeV vs $Q_s \approx 1.4 e^{0.15 y}$ GeV (at b = 0). Therefore we expect suppression of open charm at $y \gg 1$.

• Due to extended geometric scaling this suppression holds for large k_T .

Scaling of charm spectra with atomic number \boldsymbol{A}

(Kharzeev, K.T.,03)

Open charm spectrum by STAR

PYTHIA (pQCD) = $\sigma_{pp}^{c\bar{c}} \times A$.

Observed spectrum is much harder than in pQCD since $k_{intr} \simeq Q_s(x)$.

CGC at LHC

• LHC: 3 units of rapidity more than at RHIC \Rightarrow saturation starts at $y_{LHC} \simeq -3$.

PA and AA at LHC will be *deeply inside the saturation* regime!

♠ Look for *saturation in pp* as well.

Conclusions

At RHIC we are starting to see a novel effects due to a quasi-classical regime of QCD – the Color Glass Condensate, first signatures of which where observed at HERA.

Future tests of CGC at RHIC $y \gg 1$:

- inclusive hadrons $\sqrt{}$
- open charm ?
- hidden charm ?
- dileptons ?
- correlations and fluctuations ?