Some String Theory Technology

Clifford V. Johnson Physics and Astronomy University of Southern California

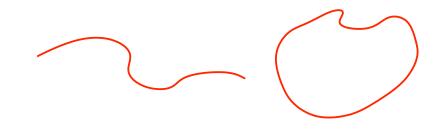
Academic Training Lectures CERN, 6th - 10th June 2005

This Section's Goal

To introduce: the language the setting and tools the scope and limitations

> To set the scene for: various breakthroughs various special topics various current events....

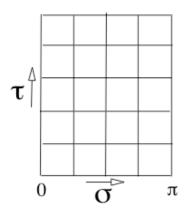
Strings come in two broad varieties, open and closed:



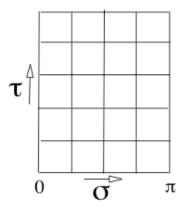
As they move in spacetime, they sweep out a two dimensional surface known as a "worldsheet".

A starting point: tackle the description of the string's allowed motion = allowed shapes of worldsheet.

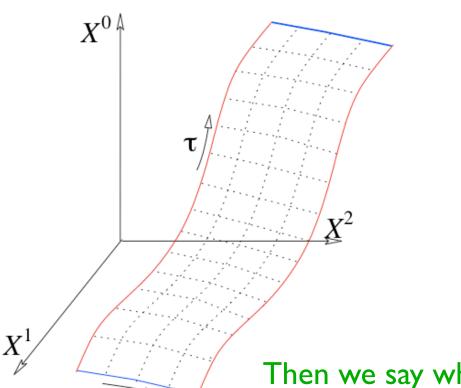
First parameterize the worldsheet with some coordinates: $\{\sigma, \tau\}$



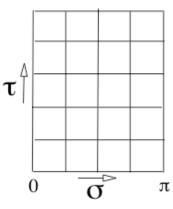
First parameterize the worldsheet with some coordinates: $\{\sigma, \tau\}$



Then we say where the string is in spacetime, which has coordinates: $\{X^{\mu}\}, \mu = 0, 1, \dots, D-1$



First parameterize the worldsheet with some coordinates: $\{\sigma, \tau\}$



Then we say where the string is in spacetime, which has coordinates: $\{X^{\mu}\}, \mu = 0, 1, \dots, D-1$

This implies some map(s): $X^{\mu}(\tau, \sigma)$

σ

What are the allowed ones?

Determine the allowed shapes by an action principle:

$$S = -T \int dA = -T \int d\tau d\sigma \left(-\det h_{ab}\right)^{1/2}$$

extremize the area swept out by worldsheet

 $h_{ab} = \partial_a X^\mu \partial_b X^\nu g_{\mu\nu}$ induced metric $(\sigma^1, \sigma^2) \equiv (\tau, \sigma)$ X^{0} $(\partial_a \equiv \partial/\partial\sigma^a)$ $X^{\mu}(\tau,\sigma)$ τ Tension: $T = \frac{1}{2\pi \alpha'}$ X^2 $\overline{\sigma}$ 0 Sets a basic length scale: $\ell_s \sim \chi$ Comparable to Planck length?

Aside: Planck Scale?

Where does the Planck scale come from?

Simple argument:

Quantum effects set a natural length scale: $\ell_c = \frac{\hbar}{--}$

Gravity sets a natural length scale:

At what mass do these length scales coincide?

 $m_p = \sqrt{\frac{\hbar c}{G}}$

 $\ell_s = \frac{Gm}{c^2}$

This length scale is the Planck length: $\ell_p = \sqrt{\frac{\hbar G}{c^3}} \sim 1.6 \times 10^{-35} {
m m}$

An equivalent action:

$$S = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma (-\gamma)^{1/2} \gamma^{ab} \partial_a X^{\mu} \partial_b X^{\nu} \eta_{\mu\nu}$$

 $\gamma_{ab}(\sigma, au)$ independent metric on worldsheet

This action is more pleasant to work with than the other one.

But they are equivalent!

An equivalent action:

$$S = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma (-\gamma)^{1/2} \gamma^{ab} \partial_a X^{\mu} \partial_b X^{\nu} \eta_{\mu\nu}$$

Action has some interesting local ("gauge") invariances:

World-sheet reparameterization invariance:
$$\sigma, \tau \longrightarrow \tilde{\sigma}(\sigma, \tau), \tilde{\tau}(\sigma, \tau)$$

Weyl invariance: $\gamma_{ab} \rightarrow \gamma'_{ab} = e^{2\omega} \gamma_{ab}$
So three functions altogether

This allows us to choose a gauge:

$$\gamma_{ab} = \eta_{ab} e^{\phi} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} e^{\phi}$$

"Conformal" gauge

Theory is conformally invariant (remnant of reparams and Weyl.)

 ϕ drops out of the action, classically.

Equations of motion become:

$$\left(\frac{\partial^2}{\partial\sigma^2} - \frac{\partial^2}{\partial\tau^2}\right) X^{\mu}(\tau,\sigma) = 0$$

The two dimensional wave equation!

So the problem of the string's motion is just solutions to this, with boundary conditions.

Closed: Periodic Open: Neumann or Dirichlet.

Solutions:

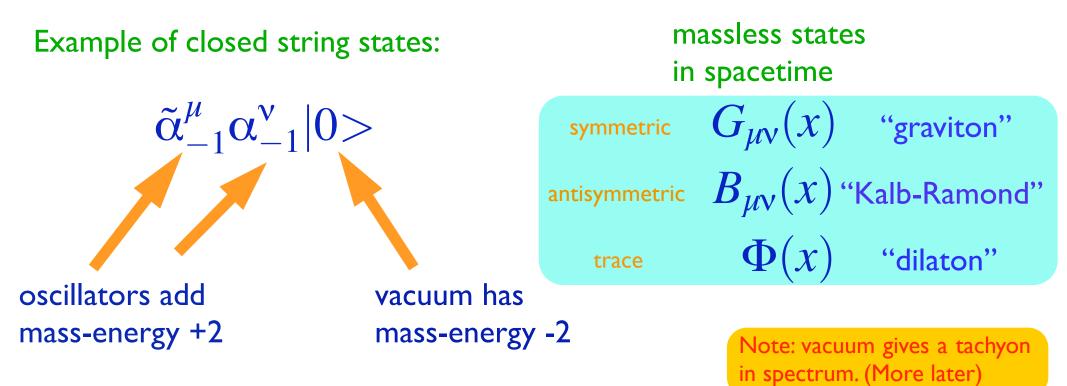
 $\tilde{\alpha}^{\mu}_{-n} = (\tilde{\alpha}^{\mu}_{n})^{*}$ etc...

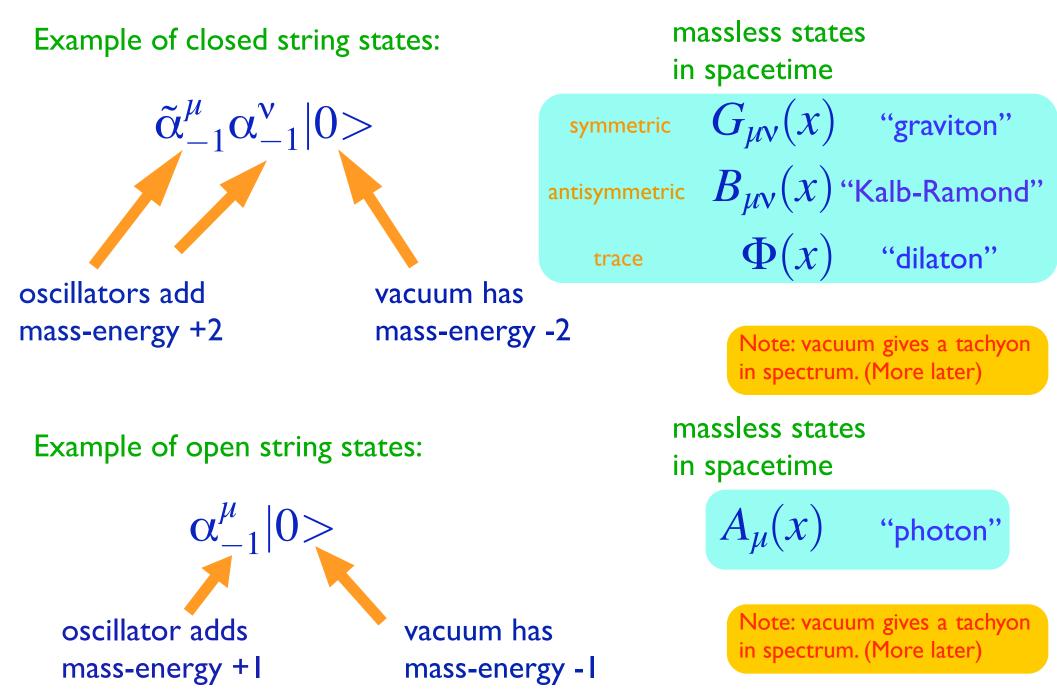
Traveling waves, independent left- and right-moving

Fourier modes become annihilation and creation operators.

There are D independent families of harmonic oscillators. One for each boson in world-sheet theory.

Theory must be reparameterisation invariant: Virasoro constraints. Succeeds in removing "ghosts" etc...





Consistency sometimes places a condition on D.

The condition comes about because theory has an anomaly in conformal invariance, with the following ingredients:

Each field X contributes + I:

There are Fadeev-Popov ghosts for fixing gauge, and they give:

The field ϕ does not in general decouple, and contributes:

c = D - 1

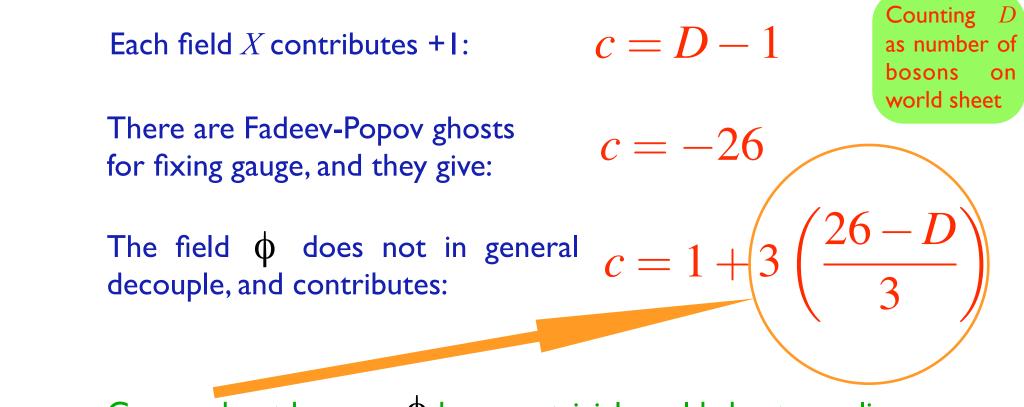
c = -26

 $c = 1 + 3\left(\frac{26 - D}{3}\right)$

Counting D as number of bosons on world sheet

Consistency sometimes places a condition on D.

The condition comes about because theory has an anomaly in conformal invariance, with the following ingredients:



Comes about because ϕ has non-trivial world-sheet coupling

Consistency sometimes places a condition on D.

The condition comes about because theory has an anomaly in conformal invariance, with the following ingredients:

Each field X contributes +1: c = D - 1

There are Fadeev-Popov ghosts for fixing gauge, and they give: c = -26

The field ϕ does not in general $c = 1 + 3\left(\frac{26 - D}{3}\right)$

Total vanishes, and so can have a string theory in any number of dimensions.

But one of them is different from others. Lorentz ...?

Consistency sometimes places a condition on D.

The condition comes about because theory has an anomaly in conformal invariance, with the following ingredients:

Each field X contributes +1: c = D - 1

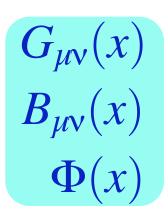
There are Fadeev-Popov ghosts for fixing gauge, and they give: c = -26

The field ϕ does not in general $c = 1 + 3\left(\frac{26 - D}{3}\right)$

For Lorentz invariance, all dimensions must couple same way, resulting in:

"
 "
 Critical Dimension"
 D

What determines the dynamics of the spacetime fields?



Revisit worldsheet action (henceforth Euclidean):

$$S_{\sigma} = \frac{1}{4\pi\alpha'} \int d^2\sigma \, g^{1/2} \, \left\{ (g^{ab} G_{\mu\nu}(X) + i\epsilon^{ab} B_{\mu\nu}(X)) \partial_a X^{\mu} \partial_b X^{\nu} + \alpha' \Phi R \right\}$$

String now propagating in background of fields whose quanta it generates!

Model must still be conformally invariant...

String Perturbation Theory

Notice that the value of the dilaton couples to the Euler number of the worldsheet.

$$\begin{split} \chi &= \frac{1}{4\pi} \int_{\mathcal{M}} d^2 \sigma \ g^{1/2} R \ = 2 - 2h \\ & \# \text{ of handles} \\ S_{\sigma} &= \frac{1}{4\pi \alpha'} \int d^2 \sigma \ g^{1/2} \ \Big\{ (g^{ab} G_{\mu\nu}(X) + i\epsilon^{ab} B_{\mu\nu}(X)) \partial_a X^{\mu} \partial_b X^{\nu} + \alpha' \Phi R \Big\} \end{split}$$

So what? Well, in the path integral, $\mathcal{Z} = \int \mathcal{D}X \mathcal{D}g \ e^{-S}$ amplitudes will be weighed by a topological factor: $e^{-\Phi\chi}$

String Perturbation Theory

Notice that the value of the dilaton couples to the Euler number of the worldsheet.

$$\begin{split} \chi &= \frac{1}{4\pi} \int_{\mathcal{M}} d^2 \sigma \ g^{1/2} R \ = 2 - 2h \\ & \# \text{ of handles} \\ S_{\sigma} &= \frac{1}{4\pi \alpha'} \int d^2 \sigma \ g^{1/2} \ \Big\{ (g^{ab} G_{\mu\nu}(X) + i\epsilon^{ab} B_{\mu\nu}(X)) \partial_a X^{\mu} \partial_b X^{\nu} + \alpha' \Phi R \Big\} \end{split}$$

Look at different orders in perturbation theory:

 $\delta \chi = -2$

Every vertex has additional factor of "closed string coupling": $g_s = e^{\Phi}$

local value of coupling set by dynamical field...

Trace of stress tensor for the model (complicated since background fields act as highly non-linear couplings):

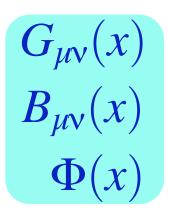
$$G_{\mu\nu}(x)$$
$$B_{\mu\nu}(x)$$
$$\Phi(x)$$

$$\begin{split} T^{a}_{\ a} &= -\frac{1}{2\alpha'}\beta^{G}_{\mu\nu}g^{ab}\partial_{a}X^{\mu}\partial_{b}X^{\nu} - \frac{i}{2\alpha'}\beta^{B}_{\mu\nu}\epsilon^{ab}\partial_{a}X^{\mu}\partial_{b}X^{\nu} - \frac{1}{2}\beta^{\Phi}R\\ \beta^{G}_{\mu\nu} &= \alpha'\left(R_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu}\Phi - \frac{1}{4}H_{\mu\kappa\sigma}H_{\nu}^{\ \kappa\sigma}\right) + O(\alpha'^{2}),\\ \beta^{B}_{\mu\nu} &= \alpha'\left(-\frac{1}{2}\nabla^{\kappa}H_{\kappa\mu\nu} + \nabla^{\kappa}\Phi H_{\kappa\mu\nu}\right) + O(\alpha'^{2}),\\ \beta^{\Phi} &= \alpha'\left(\frac{D-26}{6\alpha'} - \frac{1}{2}\nabla^{2}\Phi + \nabla_{\kappa}\Phi\nabla^{\kappa}\Phi - \frac{1}{24}H_{\kappa\mu\nu}H^{\kappa\mu\nu}\right) + O(\alpha'^{2}) \end{split}$$

 $H_{\mu\nu\kappa} \equiv \partial_{\mu}B_{\nu\kappa} + \partial_{\nu}B_{\kappa\mu} + \partial_{\kappa}B_{\mu\nu}$

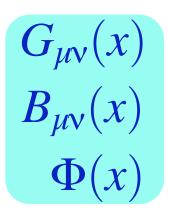
Conformal invariance requires these to vanish...But this looks like a set of spacetime field equations!

Those field equations can be derived from this spacetime action:



This is the low energy effective action for the string theory, at tree level.

Those field equations can be derived from this spacetime action:



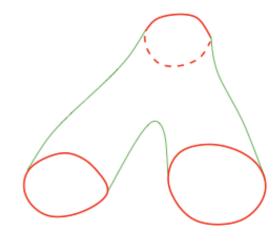
$$\begin{split} \mathrm{S} &= & \frac{1}{2\kappa_0^2} \int d^D X (-G)^{1/2} e^{-2\Phi} \bigg[R + 4 \nabla_\mu \Phi \nabla^\mu \Phi - \frac{1}{12} H_{\mu\nu\lambda} H^{\mu\nu\lambda} \\ &\quad - \frac{2(D-26)}{3\alpha'} + O(\alpha') \bigg] \end{split}$$

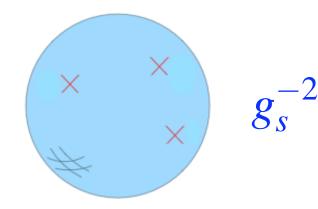
Notice the implicit power of the string coupling that appears. Everything was computed at the sphere level. Tree level in string pert. theory.

Language of Perturbation Theory

Sphere?

Can always choose conformal factor to map all external states to "vertex operators" at points....

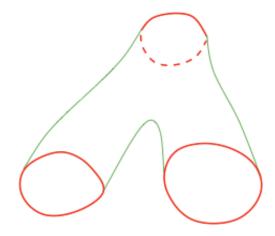


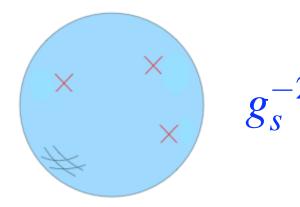


Language of Perturbation Theory

Sphere?

Can always choose conformal factor to map all external states to "vertex operators" at points....

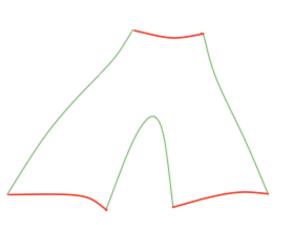


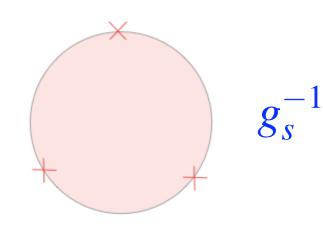


Disc (see later)

Similarly for open strings....

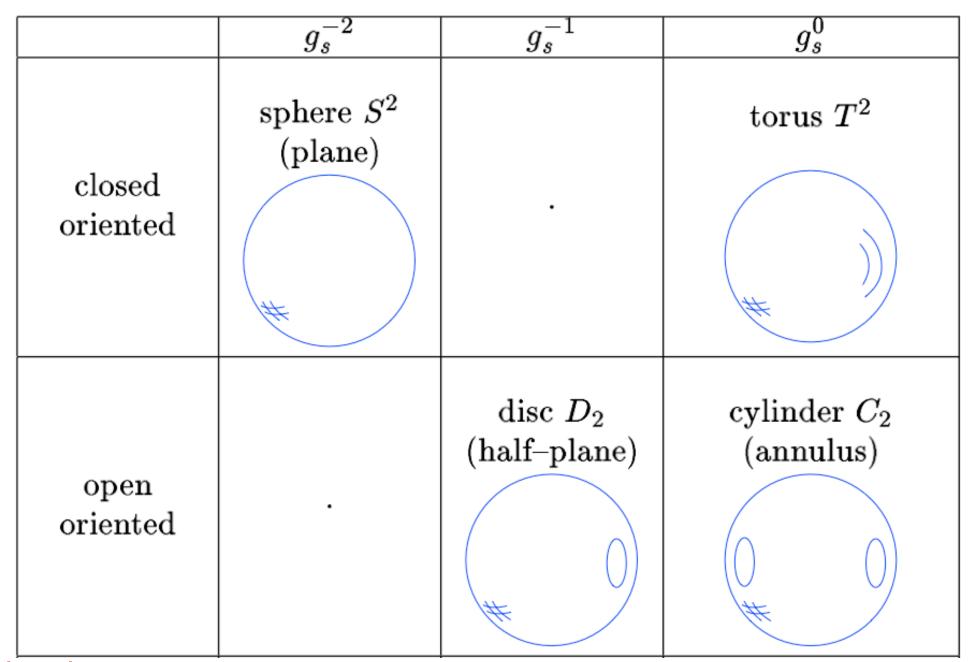
...they become operators on boundary.

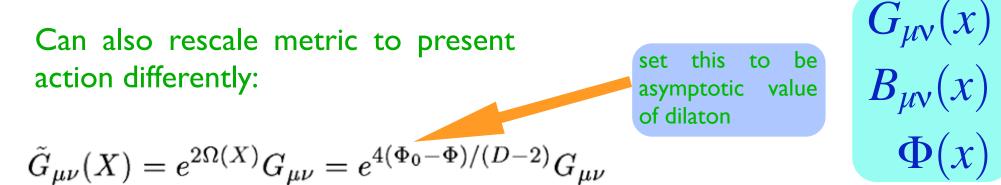




Language of Perturbation Theory

Some more diagrams...





$$S = \frac{1}{2\kappa^2} \int d^D X (-\tilde{G})^{1/2} \left[R - \frac{4}{D-2} \nabla_\mu \tilde{\Phi} \nabla^\mu \tilde{\Phi} - \frac{1}{12} e^{-8\tilde{\Phi}/(D-2)} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{2(D-26)}{3\alpha'} e^{4\tilde{\Phi}/(D-2)} + O(\alpha') \right]$$

Can also rescale metric to present action differently:

$$G_{\mu\nu}(x)$$
$$B_{\mu\nu}(x)$$
$$\Phi(x)$$

$$\tilde{G}_{\mu\nu}(X) = e^{2\Omega(X)} G_{\mu\nu} = e^{4(\Phi_0 - \Phi)/(D-2)} G_{\mu\nu}$$

$$S = \frac{1}{2\kappa^2} \int d^D X (-\tilde{G})^{1/2} \left[R - \frac{4}{D-2} \nabla_{\mu} \tilde{\Phi} \nabla^{\mu} \tilde{\Phi} - \frac{1}{12} e^{-8\tilde{\Phi}/(D-2)} H_{\mu\nu\lambda} H^{\mu\nu} - \frac{2(D-26)}{3\alpha'} e^{4\tilde{\Phi}/(D-2)} + O(\alpha') \right]$$

This is the low energy effective action in "Einstein frame". Recall: (Previous was "String frame"). $g_s = e^{\Phi}$

Closed string coupling sets Newton's constant $\kappa \equiv \kappa_0 e^{\Phi_0} = (8\pi G_N)^{1/2}$
