

Enabling Grids for E-sciencE

EGEE Fabric, Infrastructure and Middleware

Jan Astalos Institute of Informatics Slovak Academy of Sciences

www.eu-egee.org

- EGEE structure
- Infrastructure and fabric
- Middleware

EGEE Project Structure

32 Million Euros EU funding over 2 years starting 1st April 2004

24% Joint Research

JRA1: Middleware Engineering and

Integration

JRA2: Quality Assurance

JRA3: Security

JRA4: Network Services

Development

48% Services

SA1: Grid Operations, Support and Management

SA2: Network Resource Provision

28% Networking

NA1: Management

NA2: Dissemination and Outreach

NA3: User Training and Education

NA4: Application Identification and

Support

NA5: Policy and International

Cooperation

Emphasis in EGEE is on operating a production grid and supporting the endusers

EGEE Operations and Services

Enabling Grids for E-sciencE

Core Infrastructure services:

Operate essential grid services

Grid monitoring and control:

- Proactively monitor the operational state and performance,
- Initiate corrective action

Middleware deployment and resource induction:

- Validate and deploy middleware releases
- Set up operational procedures for new resources

Resource provider and user support:

- Coordinate the resolution of problems from both Resource Centres and users
- Filter and aggregate problems, providing or obtaining solutions

Grid management:

- Coordinate Regional Operations Centres (ROC) and Core Infrastructure Centres (CIC)
- Manage the relationships with resource providers via service-level agreements.

International collaboration:

- Drive collaboration with peer organisations in the U.S. and in Asia-Pacific
- Ensure interoperability of grid infrastructures and services for cross-domain VO's
- Participate in liaison and standards bodies in wider grid community

EGEE Infrastructure

Enabling Grids for E-sciencE

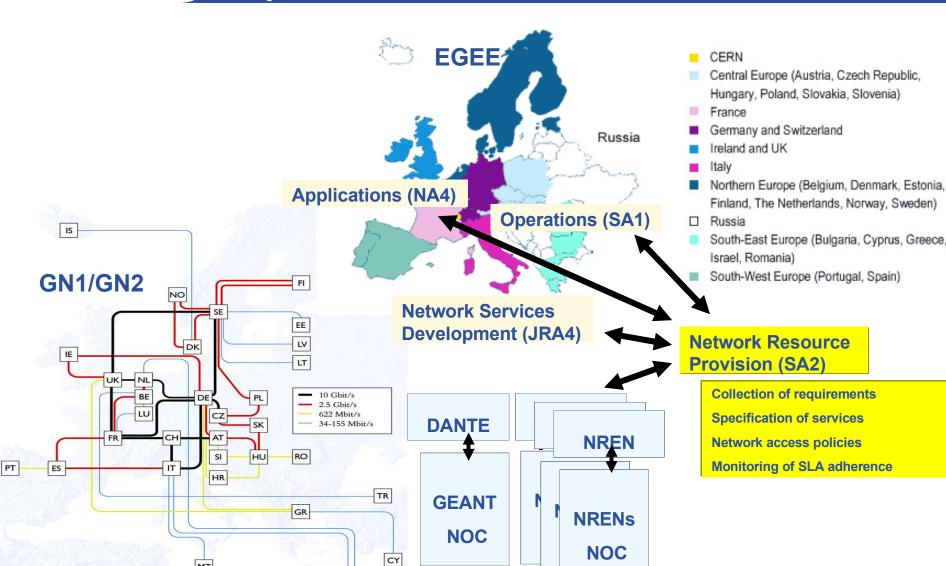
1 Operations Management Centre – OMC

- Coordinator for CICs and for ROCs
- Team to oversee operations problems resolved, performance targets, etc.
- Operations Advisory Group to advise on policy issues, etc.

5 Core Infrastructure Centres – CIC

- Day-to-day operation management
 — implement
 operational policies defined by OMC
- Monitor state, initiate corrective actions, eventual 24x7 operation of grid infrastructure
- Provide resource and usage accounting, security incident response coordination, ensure recovery procedures

~11 Regional Operations Centres – ROC


- Provide front-line support to users and resource centres
- Support new resource centres joining EGEE in the regions

- Operations Management Centre
- Core Infrastructure Centre
- Regional Operations Centre

EGEE and GEANT

Expected Computing Resources

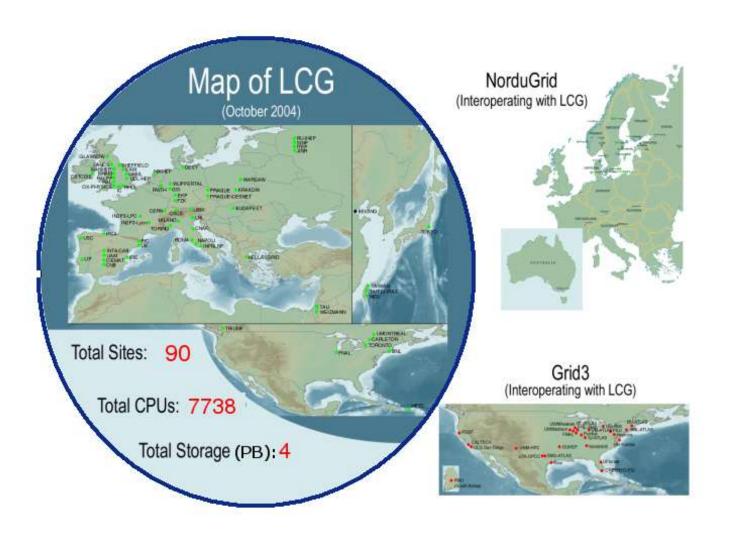
Enabling Grids for E-sciencE

Region	CPU nodes Month 1	Disk (TB) Month 1	CPU Nodes Month 15	Disk (TB) Month 15
CERN	900	140	1800	310
UK + Ireland	100	25	2200	300
France	400	15	895	50
Italy	553	60.6	679	67.2
North	200	20	2000	50
South West	250	10	250	10
Germany + Switzerland	100	2	400	67
South East	146	7	322	14
Central Europe	385	15	730	32
Russia	50	7	152	36
Totals	3084	302	8768	936

Month 24

resource centres

10

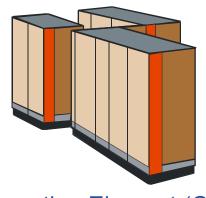

20

50

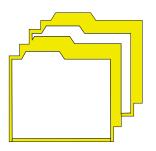
Current status

Enabling Grids for E-sciencE

http://goc.grid-support.ac.uk/lcg2



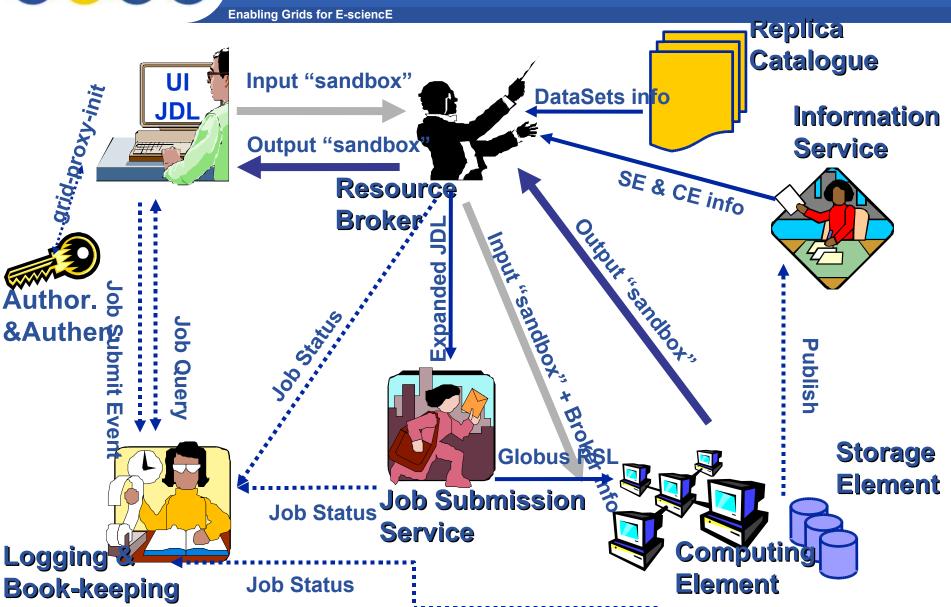
- Building blocks of the Grid
 - Computers, storage systems, networks
- Logical machine types:



User Interface (UI)

Computing Element (CE)

Replica Catalog (RC, RLS)

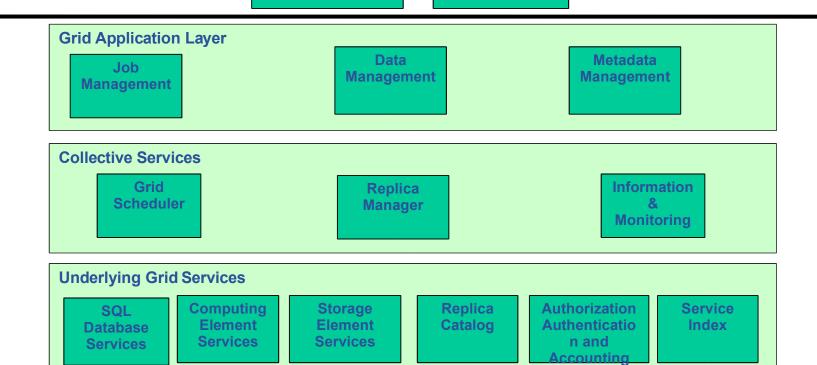

Storage Element (SE)

Resource Broker (RB)

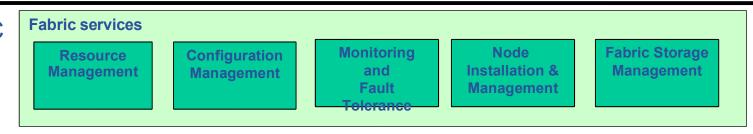
The lifecycle of an EGEE job

- EGEE middleware built upon the VDT toolkit provides generic Grid services:
 - Information
 - Job submission
 - Data management
 - Security
 - Logging
 - Monitoring
- EGEE supports computation and data storage by multiple virtual organisations

EGEE middleware

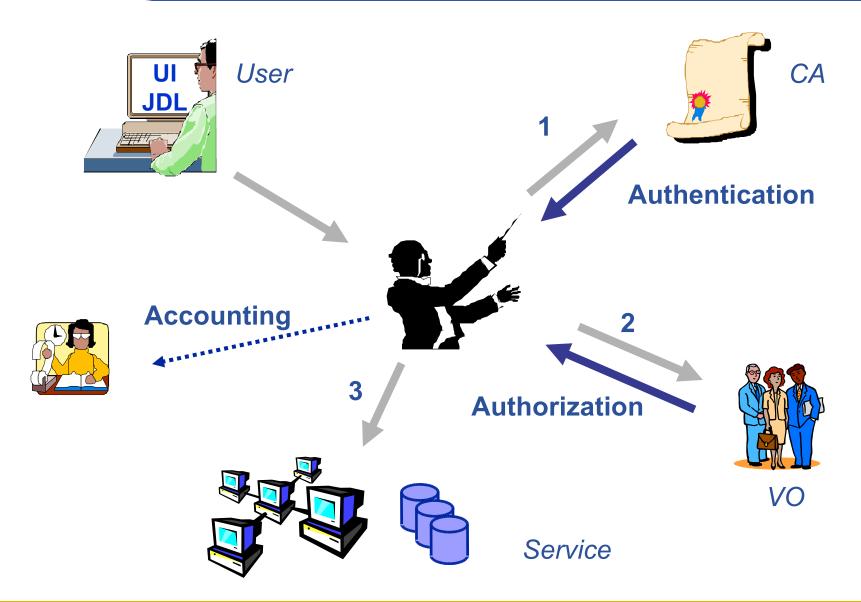

Enabling Grids for E-sciencE

APPLICATIONS


Local Application

Local Database

MIDDLEWARE



FABRIC

Authentication and Authorization

How do I login on the Grid?

- Distribution of resources: secure access is a basic requirement
 - secure communication
 - security across organisational boundaries
 - single "sign-on" for users of the Grid
- Two basic concepts:
 - Authentication: Who am I?
 - "Equivalent" to a pass port, ID card etc.
 - Certificates

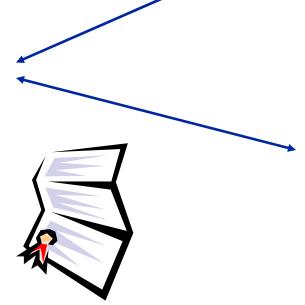
- Authorisation: What can I do?
 - Certain permissions, duties etc.
 - Virtual organizations

Security in the Grid

- In industry, several security standards exist:
 - Public Key Infrastructure (PKI)
 - PKI keys
 - SPKI keys (focus on authorisation rather than certificates)
 - RSA
 - Secure Socket Layer (SSL)
 - SSH keys
 - Kerberos
- Need for a common security standard for Grid services
 - Above standards do not meet all Grid requirements (e.g. delegation, single sign-on etc.)
- Grid community mainly uses X.509 PKI for the Internet
 - Well established and widely used (also for www, e-mail, etc.)

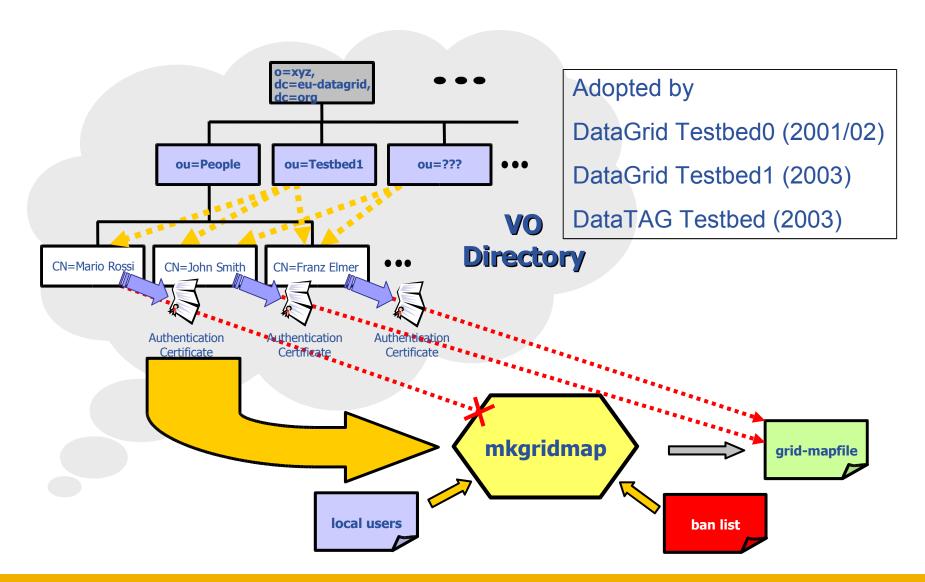
Involved entities

Enabling Grids for E-sciencE


Certificate Authority

Public key Private key certificate

Resource (site offering services)


Grid Security Infrastructure (GSI)

- Globus Toolkit[™] proposed and implements the Grid Security Infrastructure (GSI)
 - Protocols and APIs to address Grid security needs
- GSI protocols extend standard public key protocols
 - Standards: X.509 & SSL/TLS
 - Extensions: X.509 Proxy Certificates (single sign-on) & Delegation
- GSI extends standard GSS-API (Generic Security Service)
 - The GSS-API is the IETF standard for adding authentication, delegation, message integrity, and message confidentiality to applications.
- Proxy Certificate:
 - Short term, restricted certificate that is derived form a long-term X.509 certificate
 - Signed by the normal end entity cert, or by another proxy
 - Allows a process to act on behalf of a user
 - Not encrypted and thus needs to be securely managed by file system

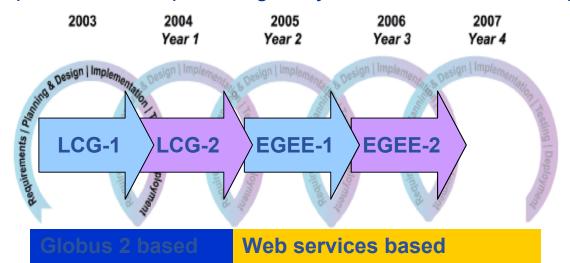
Authorisation Requirements

- Detailed user rights need to be centrally managed and assigned
 - User can have certain group membership and roles
- Involved parties:
 - Resource providers (RP, provides access to the resource)
 - keep full control on access rights
 - traceability user level (not VO level)
 - Virtual Organisation (VO) of the user (member of a certain group should have same access rights independent of resource)
- Agreement required between resource providers and VO
 - RPs evaluate authorisation granted by VO to a user and map into local credentials to access resources
- Need tool to manage membership for large VOs (10,000 users)

Information Services

- Hardware:
 - EDG Information Service
 - Information Providers
- Data:
 - Replica Catalog
 - LDAP (release 1.4)
 - RLS (release 2.0)
- Software & Services:
 - EDG Grid Services:
 - Information Service
 - MDS
 - R-GMA
 - Application Services:
 - Currently only EDG applications directly supported

- Machine Types:
- Information Service (IS)
 - Top level MDS
 - R-GMA registry
- Replica Catalog (RC, RLS)



EGEE middleware roadmap

Enabling Grids for E-sciencE

- From day 1 (1st April 2004)
 - Production grid service based on the LCG infrastructure running LCG-2 grid middleware
 - LCG-2 will be maintained until the new generation has proven itself (fallback solution)
- In parallel develop a "next generation" grid facility (www.glite.org)
 - Produce a new set of grid services according to evolving standards (Web Services)

Run a development service providing early access for evaluation purposes

- The EGEE Grid requires resources, an infrastructure and middleware that allows for:
 - Authentication and Authorization
 - Information services
 - Job and Data Management
 - Monitoring and fault recovery
- We have seen the main components of the EGEE Grid Service and Organization
 - The Grid Operations Management Structure monitors and controls the overall functionality
 - EGEE is VO based
- The EGEE tutorials ensure training at all levels with hands-on on the GILDA dedicated testbed