

www.eu-egee.org

Grid Services and GT3

Viera Sipkova
Institute of Informatics
Slovak Academy of Sciences

Grid Services and GT3

Outline

- What is the Grid Service
- How to build a Grid Service
- How to access a Grid Service
- Future

Grid Services

A **Grid Service** is a Web Service which conforms to a set of conventions (interfaces and behavior) that define how a client interacts with a Grid Service.

(I.Foster, C.Kesselman, S.Tuecke, J.M.Nick)

Web Services

- Web Services the basis for Grid Services
 - A distributed computing paradigm, a technology for service oriented architectures - loosely coupled Client-Server applications.
 - Network accessible functions that can be invoked via a well-defined remote interface.
 - An interface for Web services is defined using the Web Services Description Language (WSDL).
 - The most common implementation of Web services works in a simple Request-Response principle (relying on SOAP and HTTP).

Key Concepts

- Grid Services standard Web Services plus extensions.
- Grid Services are defined by the Open Grid Service Architecture (OGSA).
- Grid Services are specified by the Open Grid Services Infrastructure (OGSI).
- Globus Toolkit 3 (GT3) is an implementation of everything what is specified in OGSI, and therefore everything what is defined in OGSA.

Open Grid Services Architecture

- The OGSA, developed by the Global Grid Forum (http://www.ggf.org), defines a common, standard, and open architecture for grid-based applications a distributed system framework based on OGSI.
- The Goal of the OGSA is to standardize all the services one finds in a grid application by specifying a set of standard interfaces for these services.
- A Grid Service interface corresponds to portType in the Web Services Description Language (WSDL).

- The OGSI, developed by the Global Grid Forum (http://www.ggf.org), gives a formal and technical specification of what a Grid Service is and how it works.
- The OGSI defines mechanisms for creating, managing, and exchanging information among Grid Services.
- The OGSI represents the Core of the GT3, which provides a development support for exposing and accessing Grid Service implementations.

Globus Toolkit® 3

- The Globus Toolkit 3 (GT3), developed by the Globus Alliance (http://www.globus.org), is a software toolkit that allows to construct Grid enabled tools, services, and applications.
- The GT3 includes the complete implementation of OGSI – GT3 core, and a lot of other services, programs, and utilities.

Globus Toolkit® 3 Architecture

Grid Service Container Other Grid Services Data Services GT3 Base Services GT3 Security Services GT3 Core **Web Services Hosting Environment**

Globus Toolkit® 3 Components

GT3 Core

Implementation of the OGSI specification

GT3 Base Services

- Index Service: allows to find the location of the Grid Service
- Managed Job Service: allows to control the jobs
- Reliable File Transfer Service: allows to transfer data files reliable
- System Services: provide information about hosting environment (Ping, Logging)

Globus Toolkit® 3 Components

GT3 Security Services

Several layers of security (SSL, X.509 certificates,...)

GT3 Data Services

includes Replica Management

Other Grid Services

non-GT3 services running on top of the GT3 architecture

Globus Toolkit® 3

*** **GT3** Core ***

(OGSI Implementation)

- OGSI Extensions

 (in compare with standard Web Services)
 - Stateful and potentially transient services using a Factory/Instance model
 - Lifetime management
 - Grid Service instances can be created with a specified lifetime (Min and Max).
 - The initial lifetime can be extended by explicit request of the client.
 - Grid Service instances can be destroyed at any time.

- OGSI Extensions (cont.)
 - Grid Service Handle (GSH) & Grid Service Reference (GSR)
 - network-wide pointers which make accessible the Grid Service instances to client applications.

GSH – the permanent Grid Service URI GSR – WSDL document resolved from the GSH GSR contains all information required to communicate with the service instance.

- OGSI Extensions (cont.)
 - Service Data
 - allows to include a set of structured data to any Grid Service.
 - Two categories of Service Data:
 - State Information (operation results, runtime information, etc.)
 - Service Metadata (system data, supported interfaces, cost of the service, etc.)

- OGSI Extensions (cont.)
 - Notification allows clients to be notified of changes occurring in a Grid Service.
 - Pull approach the observable only informs the observers that a change has occurred.
 - Push approach allows data to travel with the notification

OGSI Extensions (cont.)

Logging

allows writing a log of interesting events to the console or to a file.

It is based on the Apache Jakarta Commons Logging component.

6 levels: Debug, Trace, Info, Warn, Error, Fatal

Service Groups

allows to group different services together and access them through a single point of entry.

- 1. Define the Grid Service Interface (with GWSDL)
- 2. Implement the Grid Service (with Java)
- 3. Deploy the Grid Service
 - Configure (with WSDD)
 - Build (with Ant)
 - Deploy (with Ant)

(1) Define the Grid Service Interface

- Grid Service interface is described through the Web Service Description Language (WSDL)
- Grid Service interface can be written in
 - Java (! some complex data types do not map very well into WDSL)
 - GWSDL (extended WSDL 1.1) using the GridService portType definition

(1) Define the Grid Service Interface (cont.)

- Grid Service interface is converted into the WSDL form through some Ant build tools (GWSDL2WSDL, generateWSDL, generateBinding,...).
- From the WSDL interface file --> Java stubs to handle the requests and forwarding them to the service implementation.

Example: Grid Service Interface in Java

```
public interface Math
{
   public void add(int a);
   public int getValue();
}
```


Example: Grid Service Interface in GWSDL

```
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MathService"</pre>
 targetNamespace=
    "http://www.globus.org/.../MathService"
 xmlns:tns="http://www.globus.org/.../MathService"
 xmlns:ogsi="http://www.gridforum.org/.../OGSI"
 xmlns:gwsdl=
    "http://www.gridforum.org/.../gridWSDLExtensions"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 ...>
<import location="../../ogsi/ogsi.gwsdl"</pre>
 namespace="http://www.gridforum.org/.../OGSI" />
</definitions>
```


Example:
 Grid Service Interface in GWSDL (cont.)

```
<gwsdl:portType name="MathPortType"</pre>
     extends="ogsi:GridService">
 <operation name="add">
   <input message="tns:AddInputMessage" />
   <output message="tns:AddOutputMessage" />
   <fault name="Fault" message="ogsi:FaultMessage" />
 </operation>
 <operation name="getValue">
 </operation>
</gwsdl:portType>
```


Example:
 Grid Service Interface in GWSDL (cont.)

```
<message name="AddInputMessage" >
    <part name=parameters" element="tns:add" />
    </message>
    <message name="AddOutputMessage" >
        <part name=parameters" element="tns:addResponse" />
        </message>

<message name="GetValueInputMessage" >
        ...

<message name="GetValueOutputMessage" >
        ...

<message name="GetValueOutputMessage" >
        ...
```


Example:
 Grid Service Interface in GWSDL (cont.)

```
<types> <!-- XML Schema type model -->
<xsd:schema ...>
 <xsd:element name="add">
  <xsd:complexType> <xsd:sequence>
    <xsd:element name="value" type="xsd:int" />
  </xsd:sequence> </xsd:complexType>
 </xsd:element>
 <xsd:element name="addResponse">
  <xsd:complexType />
 </xsd:element>
<xsd:schema>
</types>
```


- (1) Define the Grid Service Interface
- (2) Implement the Grid Service
- Implementation by inheritance
 One Java class extension of the skeleton class
 GridServiceImpl (implementation of the GridService portType)
- Implementation by delegation (Operation Providers)
 Several Java classes – created by implementing the OperationProvider

Example: Implementation by Inheritance

```
package org.globus.examples.services.first.impl;
import org.globus.ogsa.impl.ogsi.GridServiceImpl;
import org.globus.examples.stubs.MathService.MathPortType;
import java.rmi.RemoteException;

public class MathImpl
    extends GridServiceImpl implements MathPortType
{
    ...
}
```


Example: Implementation by Inheritance (cont.)

```
public class MathImpl
      extends GridServiceImpl implements MathPortType
  private int value=0;
  public MathImpl()
  { super("Simple MathService"); }
  public void add(int a) throws RemoteException
  { value = value + a; }
  public int getValue() throws RemoteException
  { return value; }
```


- 1. Define the Grid Service Interface
- 2. Implement the Grid Service
- 3. Deploy the Grid Service
 - Configure (with WSDD)
 - Build (with Ant)
 - Deploy (with Ant)

- (1) Define the Grid Service Interface
- (2) Implement the Grid Service
- (3) Deploy the Grid Service
 - Configure the service using the deployment descriptor

- Deployment Descriptor
 - defines how the Grid Service should be published
 - is written in Web Service Deployment Descriptor (WSDD) format

Example: Deployment Descriptor in WSDD

```
<?xml version="1.0">
<deployment name="defaultServerConfig"</pre>
  xmlns="http://xml.apache.org/axis/wsdd">
 <service name="examples/first/MathService" ...>
   <parameter name="name" value="MathService" />
   <parameter name="className" value="org.globus..." />
   <parameter name="baseClassName" value="org..." />
   <parameter name="schemaPath" value="schema/... />
   <parameter name="persistent" value="true" />
  </service>
</deployment>
```


- (1) Define the Grid Service Interface
- (2) Implement the Grid Service
- (3) Deploy the Grid Service
 - Configure the service
 - Build the grid service binary (GAR file)
- Grid Archive (GAR) file
 - includes all files and information needed to install the Grid Service in the runtime environment
 - is created by the Ant build tool

Creating GAR filewith Ant

- Ant build tool (http://jakarta.apache.org/ant)
 - 1. Converts the GWSDL interface into WSDL
 - 2. Creates stubs classes from the WSDL
 - 3. Compiles the stubs classes
 - 4. Compiles the service implementation
 - 5. Organizes all the files into a very specific directory structure (GAR file)

- (1) Define the Grid Service Interface
- (2) Implement the Grid Service
- (3) Deploy the Grid Service
 - Configure the service
 - Build the service
 - Deploy the service into the runtime environment (Grid Service container)

Deployment is done with the Ant build tool

Deployment with Ant

Ant build tool

- Unpacks the GAR file and copies the files within (WSDL, WSDD, compiled stubs, and compiled implementation) into key locations in the GT3 directory tree.
- According to the deployment descriptor it configures the web server to take the new Grid Service into account.

Input Files for Ant

Source files

- Grid Service interface (GWSDL)
- Grid Service implementation (Java)
- Deployment descriptor (WSDD)

Build files

- Build script make file
- Ant build file directs Ant what to do and how
- Namespace mappings file maps GWSDL namespaces to Java packages
- GT3 build files

Grid Service Directory Structure


```
gt3 examples/ --> build files (build.sh, build.xml,
                                namespace2package.mappings)
 -- schema/
     |-- examples/ --> GWSDL files and XML Schema files
                         (Math.gwsdl)
 -- org/
    |-- globus/
        |-- examples/
            |-- services/ --> Service implementation files
                |-- first/
                    |-- server-deploy.wsdd --> Deployment descriptor
                                             --> Implementation classes
                    |-- impl/
                                                 (Math.java)
            |-- clients/ --> Client implementation files
 -- build/ --> Files generated with Ant
               (lib/org.globus.examples.services.first.gar, ...)
```


Grid Service Building Process


```
service base directory
>./build.sh org/globus/examples/services/first \
    schema/examples/MathService/Math.gwsdl
                              service GWSDL_file
>cd $GLOBUS LOCATION
>ant deploy -Dgar.name= \
  ~/gt3 examples/build/lib/org.globus.examples.services.first.gar
>globus-start-container
(Output: a list of deployed services)
```


Creating a Client

- Access to a Grid Service
- Client side infrastructure model: Stubs a common approach enabling client access to Grid Services.
- Stubs are automatically generated when building the Grid Service.
- A client gains access to a Grid Service through the Grid Service Handle and Grid Service Reference.
 OGSI provides mechanisms (HandleResolver) to support client resolution of a GSH into the GSR.

Simple Client

Example: Command-line Client

```
package org.globus.examples.clients.MathService;
import ...stubs.MathService.service.MathServiceGridLocator;
import ...stubs.MathService.MathPortType;
import java.net.URL;
public class MathClient
{ public static void main(String[] args)
```


Simple Client

Example: Command-line Client (cont.)

```
public class MathClient
{ public static void main(String[] args)
  { try {
     // Get command-line arguments
     URL\ GSH = new\ java.net.URL(args[0]);
     int a = Integer.parseInt(args[1]);
     // Get a reference to the MathService instance
     MathServiceGridLocator mathSL =
       new MathServiceGridLocator();
     MathPortType math=mathSL.getMathServicePort(GSH);
```


Simple Client

Example: Command-line Client (cont.)

```
public class MathClient
{ public static void main(String[] args)
  { try {
     // Call remote method 'add'
     math.add(a);
     System.out.println("Added " + a);
     // Get current value through remote method 'getValue'
     int value = math.getValue();
     System.out.println("Current value: " + value);
     } catch(Exception e)
     \{ \dots \}
```


Creating a Client

Building the Client

>javac -classpath ./build/classes/:\$CLASSPATH \ .../examples/clients/MathService/MathClient.java

Running the Client

```
>java -classpath ./build/classes/:$CLASSPATH \
...examples.clients.MathService.MathClient \
http://147.213.65.242:8080/ogsa/.../MathService \
5
```

Output

Added 5

Current value: 5

Summary

- GT3-OGSI
 - The OGSI specification is long and dense.
 - OGSI does not work well with current Web Services tooling.
 - OGSI is too object oriented.
- Next Future
- → OGSI will converge with Web Services standards.

Next Future

- Web Services Resource Framework (WSRF) & Globus Toolkit 4 (implementation of WSRF)
 - In January 2005 a new standard will be available to substitute OGSI.
 - OGSA will be based directly on Web Services instead of being based on OGSI Grid Services.
 - High level Grid Services defined in OGSA will keep having the same interfaces and behavior, only the underlying middleware will be pure Web Services.

Final

- Global Grid Forum http://www.ggf.org
- Globus Alliance http://www.globus.org
- Apache software
 http://jakarta.apache.org
 http://xml.apache.org
 http://ws.apache.org

Thank you for your attention.