New Results from the COMPASS-Experiment

presented by M. Leberig (CERN)

Outline of the Talk

- Introduction
- The experimental setup
- Selection of results:
 - Longitudinal spin physics
 - \ast Quark helicity contribution
 - * Gluon helicity contribution
 - Transversity
 - Exclusive ρ^0 production
- Summary and Outlook

Introduction

The COMPASS Collaboration

approved: 1997, start of construction: 1998, technical run: 2001, data taking since 2002

The Physics Case

- Physics program with muon beam (results)
 - The spin structure of the nucleon
 - * Gluon polarization
 - * Polarized parton distributions
 - * Transversity
 - Spin effects in Λ production
 - Exclusive vector meson production
 - Azimuthal asymmetry (Cahn)
 - Pentaquarks
- Physics program with hadron beams (data to come)
 - Polarizability of pions and kaons (2004)
 - Glueballs and hybrids
 - Semi-leptonic decay of charmed hadrons
 - Double charmed hadrons

The Spin of the Nucleon

Naive Parton Model: $\Rightarrow \Delta \Sigma = \Delta u_v + \Delta d_v = 1$ $\Delta q = q^{\uparrow\uparrow} - q^{\uparrow\downarrow}$

In 1988 EMC measured: $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$

$$S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma$$

The Spin of the Nucleon

Naive Parton Model: $\Rightarrow \Delta \Sigma = \Delta u_v + \Delta d_v = 1$

In 1988 EMC measured: $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$

gluons are important in unpolarized case

$$S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G$$

The Spin of the Nucleon

In 1988 EMC measured: $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$

gluons are important in unpolarized case

complete description: orbital angular momenta

$$S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathbf{L}_q + \mathbf{L}_g$$

Polarised Deep Inelastic Scattering

detect scattered lepton only \Rightarrow inclusive and at least one hadron of the final state $X \Rightarrow$ semi-inclusive

$$Q^{2} \stackrel{\text{lab}}{=} 4EE' \sin^{2}(\theta/2)$$
$$x_{Bj} \stackrel{\text{lab}}{=} \frac{Q^{2}}{2M\nu}$$

 $x_{Bj} \Leftrightarrow$ momentum fraction carried by quark

Study of nucleon spin structure \Leftrightarrow polarized beam and target

The Experimental Setup

The Polarised Muon Beam

- Target material ⁶LiD $(P_{max} = 55 \%, f \approx 0.4)$
- 2.5 T Solenoid field (Homogeneity: ±1.5⋅10⁻⁵)
- ${}^{3}\text{He}/{}^{4}\text{He}$ dilution refrigerator ($T_{min} \approx 50 \text{ mK}$)
- Dynamic Nuclear Polarization
- Two 60 cm long target cells with opposite polarisation
- COMPASS magnet ready for $2006 \Rightarrow 180 \text{ mrad}$ acceptance

• To be measured:

$$A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$

• Flux normalization?

• To be measured:

$$A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$

• Flux normalization:

$$A = \frac{N_u - N_d}{N_u + N_d}$$

• Acceptance difference?

• To be measured:

$$A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$

• Flux normalization:

 $A = \frac{N_u - N_d}{N_u + N_d}$

• Acceptance difference: Polarisation rotation

• To be measured:

$$A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$

• Flux normalization:

 $A = \frac{N_u - N_d}{N_u + N_d}$

• Acceptance difference: Polarisation rotation

• Take average asymmetry:

$$\Rightarrow A = \frac{A+A'}{2} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N'_d - N'_u}{N'_u + N'_d} \right)$$

 \Rightarrow Minimization of bias

The COMPASS Spectrometer

Data Taking 2002–2004

- In total 240 units of computing power (P4 3 GHz) in 9 centers around Europe
- Processing of raw data at CERN with 120 units: 800 TByte ≡ 800 000 jobs batch, each running 8 hours ⇒ 8 TByte of DST
- Final data analysis distributed to different computer centers (e.g. CERN, gridka, Trieste)

Quark Contribution to the Spin of the Nucleon

Virtual Photon Asymmetry

• Quark distributions:

- $\Delta q(x) := q^{\uparrow\uparrow}(x) q^{\uparrow\downarrow}(x) \qquad q(x) := q^{\uparrow\uparrow}(x) + q^{\uparrow\downarrow}(x)$
- Photoabsorbtion:

• γ -nucleon asymmetry:

$$A_1 = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = \frac{\sum_q e_q^2 \left(q^{\uparrow\uparrow} - q^{\uparrow\downarrow} + \bar{q}^{\uparrow\uparrow} - \bar{q}^{\uparrow\downarrow} \right)}{\sum_q e_q^2 \left(q^{\uparrow\uparrow} + q^{\uparrow\downarrow} + \bar{q}^{\uparrow\uparrow} + \bar{q}^{\uparrow\downarrow} \right)} = \frac{\sum_q e_q^2 (\Delta q + \Delta \bar{q})}{\sum_q e_q^2 (q + \bar{q})}$$

The Inclusive Asymmetry A_1

- Inclusive DIS:
 - Detection of μ and μ'
 - Hadronic final state unobserved
- Measure μ -nucleon asymmetry:

$$A_{\mu N} = \frac{1}{\underline{P_t f P_b}} \left(\frac{N_{\uparrow \downarrow} - N_{\uparrow \uparrow}}{N_{\uparrow \downarrow} + N_{\uparrow \uparrow}} \right)$$

• γ -nucleon asymmetry:

$$\frac{A_{\mu N}}{D} \approx A_1 = \frac{\Sigma e_q^2 \left(\Delta q + \Delta \bar{q}\right)}{\Sigma e_q^2 \left(q + \bar{q}\right)}$$

- Δq and $\Delta \bar{q}$ can not be separated
- with neutron and hyperon decay data + assumption of $SU_f(3)$: $\Delta u + \Delta \bar{u}, \ \Delta d + \Delta \bar{d} \text{ and } \Delta s + \Delta \bar{s}$ can be determined

Result of the inclusive Measurement ($Q^2 > 1 \text{ GeV}^2$)

- COMPASS is a new generation experiment:
 - Better statistics than SMC in $\sim 1/3$ beam time
 - 5 times higher luminosity
 - Better dilution factor
 - Systematic errors under study (smaller than statistical)

Result of the inclusive Measurement ($Q^2 > 1 \, \text{GeV}^2$)

- COMPASS is a new generation experiment
 - Better statistics than SMC in $\sim 1/3$ beam time
 - 5 times higher luminosity

better dilution factor

- Systematic errors under study (smaller than statistical)
- Only experiment with access to x < 0.03

Result: Inclusive Asymmetry ($Q^2 > 1 \text{ GeV}^2$)

- low x region important for precision of first moment $\Rightarrow \Delta \Sigma$
- COMPASS has the potential to digest high luminosity \Rightarrow high precision results

Semi-inclusive Asymmetries

- Semi-inclusive Measurement:
 - Detection of μ and μ'
 - Plus at least one hadron \boldsymbol{h}
 - Fragmentation independent of scattering
 - Fragmentation function: $D_q^h(z)$ with $z = \frac{E_h}{\nu}$

• Asymmetries:

$$A_{1}^{h} = \frac{1}{P_{t}fP_{b}D} \left(\frac{N_{\uparrow\uparrow\downarrow}^{h} - N_{\uparrow\uparrow\uparrow}^{h}}{N_{\uparrow\uparrow\downarrow}^{h} + N_{\uparrow\uparrow\uparrow}^{h}} \right) = \frac{\sum_{q} e_{q}^{2} \left(\Delta q(x) \int D_{q}^{h}(z) dz + \Delta \bar{q}(x) \int D_{\bar{q}}^{h}(z) dz \right)}{\sum_{q} e_{q}^{2} \left(q(x) \int D_{q}^{h}(z) dz + \bar{q}(x) \int D_{\bar{q}}^{h}(z) dz \right)}$$

since $D_q^h \neq D_{\bar{q}}^h$ separation of quarks and anti-quarks

- in principle full flavour separation possible (Δu , $\Delta \bar{u}$, Δd , $\Delta \bar{d}$, Δs , $\Delta \bar{s}$)
- proton and deuteron data needed

Asymmetries to be measured

Result: Semi–Inclusive Asymmetries

• Smaller statistical error than SMC in all x_{Bj}

Result: Semi–Inclusive Asymmetries

- High sensitivity in the region of $x < 0.03 \Rightarrow$ sea quarks
- Average hadron multiplicity $1.9 \Rightarrow$ good potential for semi-inclusive asymmetries
- Even better with new target magnet

Gluon Contribution to the Spin of the Nucleon

Photon Gluon Fusion

Leading Order

QCD–Compton

• Strategies to suppress background:

Open Charm Production (unique) $q = c \Rightarrow 1.2 \text{ D}^0$ per event 'no' charm in nucleon or fragmentation \Rightarrow 'no' background Hadron Pair with high p_t $\sigma_{k_t}(\text{intr.}) \sim 450 \text{ MeV}$ $\sigma_{p_t}(\text{frag.}) \sim 350 \text{ MeV}$

• Feature: pQCD scale is set by $\hat{s} > 4m_c^2$ or $\hat{s} > (p_{t_1} + p_{t_2})^2 \Rightarrow$ explore all Q^2

Open Charm Detection

Open Charm Detection

- $\approx 1300 \ D^0 {\rm s}$ from D^* reconstructed in 2003
- Expected statistical error on $\Delta G/G$ from 2002–2004 data: 0.24
- Almost no systematic uncertainty due to physics background (golden channel)
- explore other D^0 decay channels ...

[•] Take more data ...

Additional Background for high p_t at small Q^2

• Vector–Meson–Dominance:

will be measured at COMPASS for ρ^0 which is the dominant component of the photon

• Resolved Photon:

- Asymmetry depends on the spin structure of the photon
- \Rightarrow additional systematic uncertainties to extract $\Delta {\rm G}/{\rm G}$
- \Rightarrow at first analysis only $Q^2 > 1$ events (≈ 10 %)

High– p_t Asymmetry for $Q^2 > 1 \, \mathrm{GeV}^2$

• Asymmetry:

$$A^{\gamma^*N \to hhX} = \frac{\Delta G}{G} \left\langle \frac{\hat{a}_{LL}^{PGF}}{D} \right\rangle \frac{\sigma_{PGF}}{\sigma_{tot}} + A_1^d \left(\left\langle \frac{\hat{a}_{LL}^{LO}}{D} \right\rangle \frac{\sigma_{LO}}{\sigma_{tot}} + \left\langle \frac{\hat{a}_{LL}^{QCDC}}{D} \right\rangle \frac{\sigma_{QCDC}}{\sigma_{tot}} \right)$$

- use additional cut
$$x_{Bj} < 0.05 \Rightarrow A_1^d$$
 small

- red quantities must be extracted from Monte-Carlo

• Cuts:

- Current fragmentation: $x_F > 0.1$ and z > 0.1
- Radiative corrections/ photon polarisation: 0.1 < y < 0.9
- High p_t : $p_{t,1}, p_{t,2} > 0.7 \text{ GeV}$ and $p_{t,1}^2 + p_{t,2}^2 > 2.5 \text{ GeV}^2$
- Measurement: (2002/03 data)

 $A^{\gamma^*N \to hhX} = -0.015 \pm 0.080$ (stat.) ± 0.013 (syst.)

Data Monte–Carlo Comparison

COMPASS result for $\Delta G/G$

From 2002 and 2003 data:

 $\Delta \mathsf{G}/\mathsf{G} = 0.06 \pm 0.31 (\mathsf{stat.}) \pm 0.06 (\mathsf{syst.})$

 $\langle x_g \rangle = 0.13$, RMS = 0.08

all Q^2 data from 2002–2004:

 \Rightarrow Statistical error on $\Delta {\rm G}/{\rm G}$ of 5 %

Single high p_t hadron analysis started...

Transversity

Transverse Quark Distribution

unpolarized quark and nucleon Vector–charge:

$$\langle PS|\overline{\psi}\gamma^{\mu}\psi|PS\rangle =$$

 $\int_{0}^{1}q(x) - \bar{q}(x) dx$

q(x): Spin averaged well known

longitudinally polarized quark and nucleon Axial–charge:

 $\langle PS|\overline{\psi}\gamma^{\mu}\gamma_{5}\psi|PS\rangle = \int_{0}^{1} \Delta q(x) + \Delta \bar{q}(x) \, dx$

 $\Delta q(x)$: Helicity difference known

 $\Delta_T q(x) = -$

transversely polarized quark and nucleon

Tensor–charge:

 $\langle PS | \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi | PS \rangle = \int_0^1 \Delta_T q(x) - \Delta_T \overline{q}(x) \, dx$

 $\Delta_T q(x)$: Helicity flip unknown

All three PDFs equally important to describe the nucleon \Rightarrow measure transversity

Measurement of the Quark Transversity

- Transversity can not be measured in inclusive DIS as quark helicity must flip \Rightarrow SIDIS
- Measure polarisation of struck quark, e.g. by measuring azimuthal asymmetries of produced hadrons ⇒ Collins–Effect

$$\Delta D = - +$$

 Such an asymmetry can also come from unpolarized quarks with transverse momentum ⇒ Sivers–Effect

$$f_{IT}^{q} =$$

Collins and Sivers Effect

Using a transversely polarized target allows to disentangle Collins and Sivers-Effect.

$$\begin{split} A_T^h &= \frac{1}{|S_T|} \frac{\sigma^{\uparrow} - \sigma^{\Downarrow}}{\sigma^{\uparrow} + \sigma^{\Downarrow}} \\ &\sim \dots \sin(\phi + \phi_s - \pi) \frac{\sum_i e_i^2 \Delta_T q_i(x) \Delta D_{q_i}^h(z)}{\sum_i e_i^2 q_i(x) D_{q_i}^h(z)} \quad \begin{array}{l} \text{Collins-Effect} \\ &+ \dots \sin(\phi - \phi_s) \frac{\sum_i e_i^2 f_{1T}^{\perp i}(x) D_{q_i}^h(z)}{\sum_i e_i^2 q_i(x) D_{q_i}^h(z)} \quad \begin{array}{l} \text{Sivers-Effect} \end{array} \end{split}$$

- $\Delta_T q_i(x)$ transversity DF
- $f_{1T}^{\perp i}(x)$ Sivers DF
- $q_i(x)$ unpolarized DF
- $\Delta D^h_{q_i}(z)$ Collins FF
- $D^h_{q_i}(z)$ unpolarized FF

Measure Collins FF in other reactions (e.g. $e^+e^- \rightarrow hh$) Measure Collins–Effect at different values of x_{Bj}

First Measurement of Collins–Asymmetry on Deuteron

- Asymmetry seems to be small but in non relativistic limit $h_1 \rightarrow g_1$:
 - Cancellation $A^p_{Coll} \approx -A^n_{Coll}$ - Collins fragmentation function $\Delta D^h_{q_i}$ is small
- Measure with proton target
- Use different quark polarimeter:
 - Measure transverse polarization of $\boldsymbol{\Lambda}$
 - Azimuthal dependence of plane of leading and next to leading hadron

First Measurement of Sivers–Asymmetry on Deuteron

- Sivers-asymmetry seems to be small
- \Rightarrow Sivers distribution function of the deuteron is small
 - Measure with proton target

Exclusive ρ^0 Production

Exclusive ρ^0 **Production**

• Incoherent ρ^0 production: $\mu + N \rightarrow \mu' + N' + \rho^0$

- Determination of Spin–Density–Matrix of ρ^0 from $W(\cos\theta,\phi,\Phi)$
- Check s-channel helicity conservation (helicity of γ^* entirely transferred to ρ^0)
- Determination $R = \sigma_L / \sigma_T$ assuming SCHC

Data Selection

- Topology: beam track + scattered muon + 2 additional tracks of opposite charge (assume π)
- Kinematical Cuts:
 - $E'_{\mu} > 20 \,\text{GeV}$ $Q^2 > 0.01 \,\text{GeV}^2$

 - $-\nu > 30 \, \text{GeV}$
- Hadron Cuts:
 - $-0.5 < m_{\pi\pi} < 1 \, \text{GeV}$
 - $-2.5 < E_{miss} < 2.5 \, \text{GeV}$
 - $-0.15 < p_t^2 < 0.5 \,\mathrm{GeV^2}$
- 695 500 events selected from 2002 data
- 3d-analysis will be done in future \Rightarrow 1d-angular distributions

Acceptance and smearing corrected.

Results

if SCHC is assumed:

Results

More Results on ...

• Λ-physics (2002):

COMPASS

- Transversal polarisation 185 k Λ , 97 k $\overline{\Lambda}$ (all Q^2)
- Longitudinal polarisation 8000 Λ , 5000 $\overline{\Lambda}$ ($Q^2 > 1 \text{ GeV}^2$) in current fragmentation region observe spin transfer $q \to \Lambda$

•
$$\Xi_{3/2}^{--} = (ddss\bar{u})$$
 with $S = 2$

- NA49: 4.2σ evidence at 1862 MeV Phys.Rev.Lett 92(2004)042993
- WA89 and Hera–B can not confirm

More Results on ... Pentaquarks

Summary and Outlook

- CERN is again contributing to the nucleon spin puzzle (EMC, SMC, COMPASS)
- COMPASS is a technically challenging experiment:
 - Modern detector technologies and readout
 - High data rate (>60 MByte/s), 300 TByte per year
- First physics results have been produced
- Much more to come ...
- Pilot hadron run started \Rightarrow Primakoff: π -polarizability, diffractive
- Foreseen to run up to the end of the mid-term plan of CERN (2006-2010)
- During technical stop in 2005 improvement of apparatus:
 - New polarised target magnet \Rightarrow larger acceptance
 - New RICH readout \Rightarrow improved particle ID

COMPASS has a large potential, and waits for beam ...

Thanks for the **Opportunity**

x_g