GEANT4: Release 6.2 Update

John Apostolakis, CERN for the Geant4 Collaboration

Outline

- Relevant developments until December 2003 (G4 release 6.0)
- Highlights of developments, improvements and fixes in
 - Kernel
 - Physics Processes
 - Physics Lists
 - in releases 6.1 (Mar 2003) and 6.2 (June 2004)
- Geant4's use in production
 - Improvements to help identify problems
 - Performance

Notes:

For more information see <u>http://cern.ch/geant4/</u>
for full details the release notes at <u>http://cern.ch/geant4/source/</u>
only some individual attributions mentioned

Geant4 6.0 - general picture

- New capabilities in Geant4 6.0 for HEP

 # EM ('standard') : new 'model' implementation
 # Hadronic physics lists ported & included
- 2. Numerous improvements
 - **#** to existing physics modeling & models;
 - **#** in physics process implementations;
 - **#** extending functionality that existed
- 3. Fixes, improvements, refinements
 - **#** Resulting from the high level of user feedback
 - **#** which is reflected in many developments, fixes & improvements

Focus of 6.x releases

- Release 6.0 included
 - New physics models
 - Integrated solutions
 - Physics list for hadronic use cases
 - Redesigned / revised implementations
 - EM (std)
 - Refined functionality
 - Interface changes

- Release 6.1 (Mar 04)
 - Stability improvements
 - For production
 - New tools to identify production issues
 - Fixes / improvements
- Release 6.2 (Mar 04)
 - Additional models
 - Performance focus

The high level of user feedback is reflected in developments, fixes & improvements

Part I: The 'Kernel'

New developments & improvements in Geometry, Tracking, Run & Event handling

Kernel: summary 6.0/6.2

Development

- Modular Run Manager
- Better HEPMC input
- Abstract Navigator
- New Biasing
 - Biasing:"weight-window" technique

Refinements

- General Particle Source
 - Design iteration
- Integration of motion in field
 - Enabled tuning of accuracy parameters
 for particle type, Energy, ...

Improvements Navigator:

- New 'check mode'
- better verbosity

Fixes

- Corrected 'safety' in solids
 - Addressed propagation & photon problems
 - Reported by LHCb
- Fixes for case of missed intersections in field
 - purging magnet example
 - Fixes for a 'point outside' problem seen in solids
 - problem in displacement in field

Kernel: Geometry

- Protections & actions for stuck tracks
 - New check in G4Navigator counts zero steps
 - Actions taken:
 - After 10 does corrective action
 - After 25 abandons event
- Improved verbosity for checking when navigating
 - 'Check' mode, combined with verbose level=1, prints more information
 - To help identify issues in user geometry or in navigation
- Reflection of division volumes
 - Experiment request
- Solids:
 - Framework for twisted solids (derived/refined)
 - New G4TwistedTubs shape

O. Link

I. Hrivnacova

View of Atlas toroid Courtesy of Atlas

J Apostolakis for G4 Collaboration & G4/SFT team

Kernel: Identifying geometry issues

- It is easy to create *overlapping* volumes
 - During tracking Geant4 has not performed check for malformed geometries
- Added new ability to perform checks of the navigation & model geometry (J.Apostolakis & G.Cosmo)
 - New 'check mode'
 - Available unless G4_NO_VERBOSE environment variable is set when compiling the Geant4 installation
 - More message to aid users/developers in identifying issue

Note: The full problem of detecting 'significant' *overlaps* is now addressed by the specialised tools:

- Commands for verification (DC Williams; G Cosmo)
- DAVID intersects graphics volumes (S. Tanaka)
- Example with full navigation (M Liendl)

Thanks to S. Tanaka

Kernel 6.2: Hits & Events

• Digitization & Hits

- G4SDManager, G4SDStructure: added optional argument *warning* to FindSensitiveDetector(pathName, warning), defaulted to true, to eventually exclude warning issued by G4SDManager when sensitive detector is not found.
- Event
 - Design iteration of the G4GeneralParticleSource class:
 - New classes have been added. See <u>http://reat.space.qinetiq.com/gps</u> for more details of the changes.
 - New formula for converting integral spectrum to differential one.
 - G4EventManager:
 - Added access methods to G4TrackingManager and G4StackManager.
 - Fixed incorrect behaviour of event abortion requested by BeginOfEventAction().

Part II: Physics

Using the Physics & & Physics modelling

Tailored Physics 'lists'

- "Educated guess" physics lists are for direct use, or as a starting point to modify.
- Revised with experience of comparisons with data
 - Provide 'tested' options, with known performance;
 - The same package is tested for different detector technologies.
- Physics lists for hadronic use-cases updated with
 - New physics models of Geant4 6.0
 - Experience from comparisons (eg Jan-Mar 2004)
 - Latest updates in March 2004 for Geant4 6.0; June for 6.1 / 6.2
- New module for use cases of 'standard' electromagnetic physics
 - Module includes sample physics lists for these standard EM use cases.
- Distribution
 - Included in Geant4 releases
 - Hadronic since Geant4 6.0 (Dec 2003) ported version for major release
 - Current physics lists version is included in minor releases, patches.
 - Most up-to-date from the G4 hadronic physics web pages <u>http://cmsdoc.cern.ch/~hpw/GHAD/HomePage</u>

EM Physics Processes (6.0)

- New "model-based" EM standard physics processes are now the default (since 6.0)
 - for maintaining and refining
 - keeping user code unchanged
 - Old (frozen) implementation is still available
 - Issues encountered in transition
 - Fixed in 6.0 patch 1 and 6.1
- Fix for reproducibility issue
 - Multiple scattering does not use tables (due to ions)

- Refinements
 - Tail of multiple scat. angular distribution
- New in Low Energy EM
 - New models (2BN, 2BS) for Bremstrahlung (Lisbon & INFN)
 - New processes for electrons & positrons (a-la Penelope)

EM Physics Processes (6.1 & more)

• Multiple scattering

- Tuning for tail of angular distribution
- Improvement for muons of E>1 PeV
- Ionization
 - Updated energy intervals, fluctuation models ...
 - Multiple scattering does not use table
 - Needed to ensure repeatability
 - Added PAI (Photon-Absorption-Ionisation) model
- Optical processes
 - New process for wavelength shifting
 - Adoption of G4SurfaceProperty class for materials
- Fixed problem reports
 - ionisation in air with low pressure less than 10-4 Atm;
 - in simulation of fluctuation of energy losses in very small steps (performance issue, from ALICE).

EM Physics: 'Standard' / 6.2

- Improvements in Multiple Scattering (MS) model
 - Changed true to geometrical length conversion (& reverse)
 - Meant to reduce step size dependence due to low energy MS
 - Expected to affect the resolution of sampling calorimeters
- Use 'integral method' for μ, ion & hadron ionisation (as e⁻)
 - New default still limits step to 20% current range (as in G4 5.2)
- Improved Sampling in Integral methods
 - For processes whose cross-sections have peaks
- Energy loss fluctuations
 - For very small steps, modified to reduce step-dependence in results
 - Smoothed sampling of Gaussian fluctuations, when $\sigma_E > E_{loss}$

EM 'Standard' 6.2 (cont)

- New, second, Photo Absoption Ionisation (PAI) model
 - Splits the cross section between electrons and photons
- Updated
 - calculation of radiative corrections
 - for Bethe-Bloch model for muon energy above 1 GeV.
 - parameterization for $\mu \rightarrow e^+ e^-$ model in region E > 100 GeV

Electromagnetic Processes (Low-energy)

- New models for PIXE
- Photoelectric angular distribution: redesign, with reimplementation of Sauter-Gavrila distr.
- Fix in positron energy loss process (
 'Penelope' variant)

Hadronic Physics: Extensions & Improvements / 6.0

- Added biasing in framework
 - leading particle biasing for any reaction
 - cross-section biasing for e-/N and γ /N reactions
- Binary cascade:
 - included pion projectiles
 - added light ion reactions
 - improved transition to pre-equilibrium model
- Bertini Cascade
 - improved in the range 5-10 GeV
 - verified its suitability for isotope production estimation
- QGSM string model: improved meson splitting
- Improved selection of element for creating final state

Hadronics: improvements in 6.1

• Identifying initial conditions in crashes & other problems

- White-board and Signal-handler prints the reaction conditions.
 - Also run-time checking the energies of all secondaries for NaN values.

• Improvement of CHIPS (Chiral invariant Phase Space) model

- Big upgrade of the CHIPS nuclear fragmentation model: more hyperons are added to fragmentation algorithm
- New conservation, step by step, of energy/momentum and charge/baryon number
 - Fixed issues identified.
- Fixes
 - 'Logic' fixes, eg for suspended particles
 - Fixed a few memory leaks and for occasional non-conservation scenarios
- Refinements
 - Introduced minimal transverse mass for diffractive scattering of gammas.
 - Updated implementation of μ -nuclear absorption at rest.

Hadronic processes Technical issues (6.1 and 6.2)

- Identifying problem conditions (6.1)
 - Added white-board, signal handler and C++ exceptions
 - That record initial reaction conditions and print them out in case of 'soft' error or program crash
 - As a result problems can be fixed faster
 - Instead of needing 2-5 days to reproduce, can be found in an hour.
 - Turnaround time for a fix is much faster, even for rare problems.
- Particle ID after interaction
 - Optionally kill primaries (LHCb request)
 - can be steered from user code
- Fixes for reported problems

Hadronic Models: new & improved in 6.2

- Evaporation models
 - *Ablation*: new model for use with abrasion code
 - GEM model implementation
 - HETC emission probabilities for Weisskopf-Ewing evaporation model
- Ion Reactions
 - Wilson's Abrasion for induced ion reactions.
 - *EM dissociation* for ion-ion collisions
- High energy elastic scattering: new coherent elastic model
 - requires a tabulation, which is kept as a 'data set' (provided)
- Diverse
 - new μ^{-} nuclear absorption code
 - Improved fast radioactive decay code
 - GNASH2 transition probabilities now available
 - in exciton precompound model

Hadronics: Cross Sections & Scattering

- Cross sections:
 - Newest pion scattering data of 'Barashenkov'
 - remove discontinuities
 - Fix in high energy p-H cross-sections (G3 legacy bug)
 - Ion-ion cross-sections
 - Tripathi's systematics for ion-ion cross-sections for light ions
 - Parameterizations from Shiver, Kox and Shen
- Scattering term
 - extended for nucleon induced reactions to 8 GeV
 - included s-wave absorption
 - pion induced reactions (up to 1.5 GeV)

Hadronics: Improvements & fixes

Element selection in creating final state

 fix for materials with many elements
 now choosing isotope before calling model
 using A^{2/3} cross-section approximation

Hadronic Processes Summary of changes in 6.2

- New packages and models:
 - *Ablation*: model for evaporation (for use with abrasion code).
 - *Abrasion*: package for ion reactions.
 - EM dissociation.
 - *Coherent elastic*: new model for high energy elastic scattering, requiring a new provided data set for elastic scattering data.
- Cross sections:
 - Removed discontinuities in pion scattering data.
 - Fix in high energy p-H cross-sections (G3 legacy bug).
- Particle ID after interaction
 - Optional kill primaries can be steered from user code (LHCb request)
- Fixes for reported problems

Part III: Auxiliary

User Interaction Performance 'Platforms'

User Interactivity

- Visualization
 - Ported OpenInventor driver to Windows
 - And revised, so as not to depend on HEPVis
 - Renamed 'zlib' prefix to 'heprep_z'
 - To resolve conflict with other programs/libraries with zlib
- Environments
 - New version of MOMO Java tools
 - MOMO included in distribution (since 6.0) includes
 - GGE (Geometry editor)
 - GPE (Physics editor)
 - New version of GPE includes change/fix.

'Platform' changes

- Enabled loading of dynamic libraries
 - Shared library mechanism
 - Targeted for Windows
 - Request of LHCb
 - Also usable on
 - MacOS 10.3
- Newly supported (June 2004)
 - gcc 3.2.3 on Linux
 - Red Hat 7.3 and SLC 3
 - Visual C++ .net 7.1
 - on Windows XP

- 'Higher' Optimization level
 - -O2 is new default (for gcc)
 - in place of -O (ie –O1)
- OS / compilers verified
 - Emerging platforms
 - MacOs 10.3 with gcc 3.3
 - icc 8.0 (IA-32 & IA-64)
 - Check for porting
 - Latest gcc: now 3.4
- Dropped / Dropping
 - egcs already
 - end-2003
 - gcc 2.95.2 & Vis C++ 6
 - end-2004

Allocator and Dependencies

G4Allocator

- Added utility methods
 - to de-allocate storage
 - to print total pages
- Under user control & responsibility

AIDA

- Examples moved to AIDA 3.2.1
 - Many use PI implementation

CLHEP

- G4 6.2 requires CLHEP 1.8.1.0
- Moved development to 1.9.1.1 (beta)
 - Works since September (ref-03)
 - Thanks to CLHEP team
 - Await public release!!
 - For now, still works with 1.8.1.0
- Geant4 7.0
 - See next slide

Geant4 7.0 and 'dependencies'

- For Geant4 7.0 evaluated/ing impact of potential moves to:
 - <cmath> (agreed)
 - CLHEP 2.0 (under discussion)
 - <sstring> (postponed full move)
- Concern for use of CLHEP 2.0, focused on
 - Usability of long units names
 - Clhep::units::GeV
 - Compromise of clhep::GeV is still seen as 'bulky'
 - Impact of move on user communities is unclear

CPU Performance (condensed)

- Our geometry benchmarks
 - demonstrate that the geometry is as good or faster (simple or complex cases)
- Performance in several experimental setups (with Geant4 releases 2 and 3) was comparable to Geant3
 - A few counterexamples, including BTeV ECAL.
 - New issues arose in Geant4 4.0
 - and nearly all were addressed (in patches & release 4.1)
- Difficult cases remain, including
 - Some setups of EM showers (particularly large blocks)
 - Field propagation in complex setups (eg CMS), factor $\sim 2x$ which are under active investigation.
- Collecting a set of benchmarks
 - To follow computing performance regularly
- Goal is that Geant4 is at least as fast as Geant3 in almost all cases
 - When comparisons are made for configurations that obtain the same physics performance.
 - And, of course, when its power is used adequately

CPU Performance

- Performance in several experimental setups
 - Issues raised in 2002: BTeV ECAL, Atlas EMB,
 - Slowdown typically 2.0x 3.0x compared to Geant 3.21
 - Degradation from Geant4 3.2
 - Issues in Geant4 4.0 were resolved (in patches & release 4.1)
 - Improvements lead to typical factor ~1.8x vs G3 (eg EMB, Sep 02)
- In 2003/4 the most difficult cases included
 - Some setups of EM showers (eg large blocks "no geometry")
 - Field propagation in complex setups (eg CMS), factor $\sim 2x$
- Performance improvements obtained
 - About 20% better (CMS) with 5.2
 - Key areas identified: EM & propagation in fields

Using Composite Calorimeter. Source R Yaari

20 October 2004

B=0

80%

60%

40%

20%

0%-

J Apostolakis for G4 Collaboration & G4/SFT team

Performance: status & actions

CPU 'Benchmark' suite

- Benchmark suite created
 - Simple setup(s)
 - Started from Extended TestEm2
 - Test beam(s)
 - LHC experiment calorimeter(s)
 - Magnetic field
 - derived from simplified BaBar setup
- Benchmarks in regular use
 used to check dev-tag performance

New example applications

Contributed by partners

- Cosmic ray charging from LISA (ESA)
- Hadron therapy
- Medical linac
- *Purging magnet* (S Larson, Karolinska)
- Radio protection
- LXe: Optical (TRIUMF)
- Parallel: ExDiane (CERN & INFN)
 Revised 3 EM(std) 'extended' examples

 Added check for automating regression tests

Part IV: Past 6.2 / Future

Regression testing 'Migrations' in 7.0 Upcoming features

Patches for release 6.2

- Patch 1 (July 2004)
 - Fix for multiple scattering
 - Particles above 80 GeV suffered large deflections in thin media
- Patch 2 (upcoming)
 - Fix for problem with switching materials in parameterized volumes
 - Fix for problem report in Bertini cascade (HARP)

Statistical testing 2003/4

• Establishment of 'statistical testing' suite

- Automated comparison of physics quantities
 - Against 'standard' data (eg NIST)
 - INFN and SLAC efforts
 - Reusing donated 'test-beam' comparisons
 - Full applications from ATLAS, CMS.
 - Simple setups for 'regression testing'
 - Simplified, typical HEP detectors without digitisation
 - For details see A Ribon's talk in G4 Workshop 2004 (soon)
- Note also the established benchmark suite for computing performance
 - Simple and test-beam setups

Kernel Changes for 7.0

Several changes in kernel are planned for the 7.0 release. A number will impact users

In order of the effects:

- New scheme of storing/retrieving physics tables
 - Enables user to read a portion & generate the rest
- New "unknown" particle and "unknown decay" process
 - For particles whose physics is not simulated, we now create
 - Enables full decay chains to be treated uniformly
- New dedicated class/process for user step limitation
 - Separating step length limitation from track killing
- Possibility to alter detector sensitivity with the parameterized volume
- For process writers, new methods in Particle Change
 - Eg SetEnergyChange becomes ProposeEnergy
 - New UI commands for G4GeneralParticleSource

Established new releases & new features

- Established releases
 - End of June (minor release)
 - End of December (major release)
- The activities planned in 2004
 - taking into consideration requirements of all users including those from LHC experiments / LCG

Requirements and Releases

- Geant4 Users' Technical Forum http://cern.ch/geant4/technical_forum
 - Requirements collection and first-level prioritization
 - Quarterly meetings, next ones: 4th Oct (Catania), 16th Nov (CERN).
- Upcoming developments and releases
 - 2004 work items & planned release contents
 - At URL http://cern.ch/geant4/source/planned_features.html
 - Started from requirements and requests of users/experiments
 - Next major release Geant4 7.0 in mid-December
 - New developments
 - Improvements and other refinements
 - Changes that require interface changes
 - Any fixes, further performance improvements.
- Developments available
 - In monthly development tags
 - In open β releases each quarter
 - If there are relevant developments, not included a minor or major release.

Feedback and improvements

Much feedback received from users, partners:
On physics validation

LCG, ATLAS, CMS, BaBar, GLAST, HARP.

Extensive pre-production tests

CMS, ATLAS and LHCb (2003-04)

Large scale and emerging production

Enabled and assists in identifying open issues.

Challenges / Ongoing

- Identifying 'unwanted' changes
 - Towards an 'acceptance' suite
 - Regression tests for automated testing
 - In addition to user/experiment acceptance tests
- Performance improvement
 - Large productions / always a goal
- Expanding use of 'best-practice'
 - Eg new methods to identify 'hard' problems

http://cern.ch/geant4

Summary

- Geant4 latest minor releases 6.1 and 6.2 included
 - Refinements and new features in the kernel
 - Allocator features; navigator
 - New models, improvements & refinements in EM
 - Improving the new 'model-based' implementation
 - Reducing memory footprint
 - Extensions, improvements & new models in hadronics
 - Also leading particle & cross section biasing
 - Revisions for hadronic physics lists & new EM (std) lists
- _Geant4 is evolving
 - With experience in experiment production and use in medical, space and other application domains.
 - Much, excellent, feedback from LHC experiments, BaBar in 2003/4
 - Users' Technical Forum meetings for discussing requirements and priorities