

<u>MC data production, reconstruction</u> and analysis - lessons from PDC'04

Latchezar Betev Geneva, December 9, 2004

<u>Outline</u>

- Goals, structure and tasks
- Principles and platforms
- Statistics
- Operation Methods
- > Monitoring
- Site participation and operation
- Summary

Goals, structure and tasks

- > Test and validate the ALICE Offline computing model:
 - Produce and analyse ~10% of the data sample collected in a standard data-taking year
 - Use the complete set of off-line software: AliEn, AliROOT, LCG, Proof and in Phase 3 - the gLite and the ARDA analysis prototype
 - *Test* of the software and *physics analysis* of the produced data for the Alice PPR
- Structure logically divided in three phases:
 - Phase 1 Production of underlying Pb+Pb events with different centralities (impact parameters) + production of p+p events
 - Phase 2 Mixing of signal events with different physics content into the underlying Pb+Pb events
 - Phase 3 Distributed analysis

Phase 1 job structure

Event statistics

> Phase 1 conditions and events:

Centrality name	Impact parameter value [fm]	Produced events
Cent1	0 - 5	20K
Per1	5 - 8.6	11
Per2	8.6 - 11.2	н
Per3	11.2 - 13.2	н
Per4	13.2 - 15	п
Per5	> 15	11

The distributed analysis

- > Simplified view of the E2E ALICE analysis prototype:
 - ALICE experiment provides the UI (ROOT) and the analysis application
 - > GRID middleware provides all the rest

> Analysis model:

- > execution: analysis tasks are produced from
 - GRID shell commands for batch analysis
 - ROOT prompt
 - interactive analysis mode: PROOF
 - batch analysis mode: job splitting

Phase 2 physics signals:

Signal	No.of signal events	Number of				
	per underlying	jobs				
Jets (un- and quenched)	cent 1		PHOS	cent 1		
Jets PT 20-24 GeV/c	5	1666	Jet-Jet PHOS		1	20000
Jets PT 24-29 GeV/c	5	1666	Gamma-jet PHOS		1	20000
Jets PT 29-35 GeV/c	5	1666	Total signal		40000	40000
Jets PT 35-42 GeV/c	5	1666	D0	cent 1		
Jets PT 42-50 GeV/c	5	1666	DO		5	20000
Jets PT 50-60 GeV/c	5	1666	Total signal		100000	20000
Jets PT 60-72 GeV/c	5	1666	Charm & Beauty	cent 1		20000
Jets PT 72-86 GeV/c	5	1666	Charm (comile) + Vaci	Centi	E	20000
Jets PT 86-104 Gev/c	5	1666	Deputy (consider V		5	20000
Jets PT 104-125 GeV/c	5	1666	Beauty (semi-e) + 1		000000	20000
Jets PT 125-150 GeV/c	5	1666	Total signal		200000	40000
Jets PT 150-180 GeV/c	5	1666	MUON	cent 1		
Total signal	399840	39984	Muon coctail cent1		100	20000
Jets (un- and quenched)	per 1		Muon coctail HighPT		100	20000
Jets PT 20-24 GeV/c	5	1666	Muon coctail single		100	20000
Jets PT 24-29 GeV/c	5	1666	Total signal		6000000	60000
Jets PT 29-35 GeV/c	5	1666	MUON	per 1		
Jets PT 35-42 GeV/c	5	1666	Muon coctail per1	-	100	20000
Jets PT 42-50 GeV/c	5	1666	Muon coctail HighPT		100	20000
Jets PT 50-60 GeV/c	5	1666	Muon coctail single		100	20000
Jets PT 60-72 GeV/c	5	1666	Total signal		0000000	60000
Jets PT 72-86 GeV/c	5	1666	MUON	nor 4	0000000	00000
Jets PT 86-104 Gev/c	5	1666	MUUN	per 4	E.	20000
Jets PT 104-125 GeV/c	5	1666	IVIUON COCTAIL per4		5	20000
Jets PT 125-150 GeV/c	5	1666	Muon coctail single		100	20000
Jets PT 150-180 GeV/c	5	1666	Total signal		2100000	40000
Total signal	399840	39984	Grand total		15239680	339968

09 December 2004

ALICE Computing Model Workshop

Resources statistics

- > Job, storage, data volumes and CPU work:
 - > Number and duration:
 - > 400 000 jobs
 - 6 hours/job
 - > Number of files:
 - > AliEn file catalogue: 9 million entries
 - > 4.5 milion files distributes at 20 computing centres world-wide

> Data volume:

- > 30 TB stored at CERN CASTOR
- > 10 TB stored at remote SEs
- > 200 TB network transfer CERN -> remote computing centres
- > CPU work:
 - 750 MSi2K hours

Principles and platforms

- True GRID data production and analysis: all jobs are run on the GRID, using only *AliEn* for access and control of native computing resources
- > LCG GRID resources: access through AliEn-LCG interface
- > In phase 3: gLite +**PROOF** with ARDA E2E Prototype for ALICE
- Software: AliRoot/GEANT3/ROOT/gcc3.2 libraries distributed by AliEn:
 The AliROOT code was kept backward compatible throughout the excercise
- Used platforms:
 - GCC 3.2 + i686 32-bit Cluster
 - GCC 3.2 + ia64 Itanium Cluster

Operation methods and groups

- Phase 1 and 2:
 - > Central job submission one person in charge of everything
- Phase 3:
 - > Many users with centralized user support
- > ALICE control and responsibility for the central AliEn services
- CERN storage and networking: IT/FIO, IT/ADC
- LCG operation: IT Grid Deployment Team
- Local CE: one local expert (typically the site administrator)
- > The above structure was/is functioning very well:
 - Regular task-oriented group meetings
 - Remote (e-mail) consultations and error reporting to the experts at the CEs
 - More sophisticated tools: LCG Savannah, Global Grid User Support at FZK

<u>Monitoring – job wrapper</u>

History Monitoring

Integrated Services Architecture

- ALICE repository history of the entire DC
- ~ 1 000 monitored parameters:
 > Running, completed processes

 - > Job status and error conditions
 - > Network traffic
 - Site status, central services monitoring
 - >
- 7 GB data
- 24 million records with 1 minute granularity these are being analysed with the goal of improving the GRID performance

09 December 2004

ALICE Computing Model Workshop

Job failure rates (AliEn)

- > 1% error submission:
 - > CE scheduler not responding
- > 3% error while loading input data:
 - Remote SE not responding
- > 10% error during execution:
 - > Job aborted insufficient WN memory, AliRoot problem
 - Job cannot start missing application directory
 - Job killed by CE scheduler
 - > WN or global CE malfunction (all jobs on a give site die)
- > 2% error while saving output data:
 - Local SE not responding
- > The above conditions are reported by the ClusterMonitor:
 - > WN identification and type of problem:
 - "Out of memory", "Cannot find /home/aliprod/...."
- > Are used for reporting the detailed problem to the CE administrator
- > And may result in:
 - > Automatic blocking of the site from the ALICE VO until the problem is fixed
 - > Resubmission of the failed job

In cooperation with the CE administrators, the sites have been tuned during the DC and the failure rates are now very low

Site participation

17 sites under AliEn direct control and additional resources through GRID federation (LCG)

<u>Summary</u>

- Running since 9 months with *AliEn* and currently in Phase 3 using the *ARDA E2E* analysis prototype and (soon) *gLite*
- Permanent improvement of the AliEn, following requirements with increasing complexity:
 - More functionality, control and monitoring tools: job handling, job resubmission
 - > The PDC'04 demonstrated the AliEn design scalability
- Shown successfully GRID interoperability: *AliEn* and *LCG*
- The offline computing model has been extensively tested and validated during the PDC'04

Summary (2)

> The framework and duration of the PDC illustrated:

- Many of the challenges we encountered would not have shown in a short DC:
 - Operational problems of the GRID and CE machinery for extended periods of time
 - Keeping a stable and backward compatible software, which is constantly being developed
 - Need for a stable personnel, especially at the T2 type computing centres
- Keeping the pledged amount of computing resources throughout the exercise at the CEs:
 - > Local priorities necessitate to be flexible
- Flip side using the provided resources to the maximum capacity:

Not always possible – breaks were needed to do software development and fixes, sometimes with very little advance

Summary (3)

- As expected the most challenging part is the multi-user operation during phase 3:
 - The middleware needs to be "protected" and fortified in several areas
 - Documentation and "recipes" should be published and kept upto-date
 - > Since the AliEn development is frozen:
 - > The needed improvements are incorporated in *gLite*
 - Phase 3 will also (we hope) provide a feedback to the *gLite* developers