TRD Offline PID

Christoph Blume

HLT Meeting 6.12.-8.12.2004

Outline

- Transition Radiation Detector
 - Setup
 - Working principle
 - Test beam results
- Detector response
 - Energy loss simulation
 - TR photon simulation
 - Detector effects
- Reconstruction
 - Implementation in ESDs
 - Electron likelihood

Transition Radiation Detector The Setup

- TRD in numbers:
 - 540 chambers
 - o 6 planes
 - 18 sectors (supermodule)
 - Number of channels: : 1.2×10^{6}

Transition Radiation Detector Working Principle

- TR photons are generated by charged particles crossing the border between two different di-electric media
- Properties:
 - Energy in keV range
 - Emissionangle ~1/ γ
- Spectra and yield are determined by:
 - Number and distance of borders
 - Thickness and plasma frequency of media
 - Velocity of the charged particle ($\gamma > 1000$)

- Radiators:
 - Foil stack
 - Fiber materials
 - Foam-like materials

Transition Radiation Detector Working Principle

 π - (p = 5 GeV/c): $\gamma \approx 36$

Transition Radiation Detector Working Principle

TR enhances difference in pulse height between electrons and pions

Transition Radiation Detector Test Beam Results

Design value:

Pion suppression factor 100 at 90% electron efficiency

Detector Response Procedure

- Detector response as implemented in Aliroot
 - As close as possible to test beam results
 - Needed for detailed simulation of e/π-discrimination
- Generate charge deposit:
 - "Normal" dEdx signal in Xe
 - Signal from absorbtion of TR photons

- Chamber response:
 - Diffusion
 - \circ E \times B
 - Pad response
 - Drift length variations
 - Gas gain fluctuations
 - Time response due to slowly drifting ions
 - Cross talk
- Electronics response:
 - Coupling factors
 - Gain factor
 - Electronics noise
 - Time response
 - Digitization

Detector Response Energy Loss Simulation

- Default Geant3.21 dEdx calculation
 - Fixed step sizes
- Optional: microscopic simulation (energy distribution of δ -electrons from Ermilova et al.)

Detector Response

Energy Loss Simulation: Ermilova \leftrightarrow Geant3

Plot (c):

Ermilova: Mean=128.5 eV GEANT : Mean=230.3 eV

of primary collisions for 2.0 GeV/c π^+ from Bethe Bloch:

Ermilova: 52.7/cm GEANT: 21.9/cm

Most probable energy loss:

Ermilova: 14.8±0.02 keV GEANT: 10.1±0.02 keV

Overcompensation by different Bethe Bloch.

Detector Response Non–Isochronity of Drift

Simulation with GARFIELD

$$V_a = 1.55 kV$$
,
 $V_d = -2.1 kV$,
Xe-CO₂ 85-15

Resolution depends on distance to wire

Detector Response Position Resolution

10deg 0deg el, Beam pi, Beam el, Sim pi, Sim ● el, Beam ○ pi, Beam ■ el, Sim ■ pi, Sim • Ο 120 S/N 20 40 60 80 100 20 60 80 100 120 40 S/N Sigma(Residuals) [mm] 0 1 2 2 4 2 2 2 2 8 0 1 2 2 4 2 9 2 2 8 8 Sigma(Residuals) [mm] 0 0 0 0 0 0 0 0 0 1 7 7 7 9 0 0 0 5deg 15deg el, Beam pi, Beam el, Sim el, Beam pi, Beam el, Sim O С - 2 pi, Sim pi, Sim el, Beam, no Rad pi, Beam, no Rad 0.1Ē М 120 S/N 60 20 40 60 80 100 20 40 80 100 120 S/N

Detector Response TR Photon Spectrum

- TR not part of GEANT 3.21
- Analytical description of regular foil stack
 - (C.W. Fabjan and W. Struczinkski, PLB 57 (1975), 483)

$$\frac{\mathrm{d}W}{\mathrm{d}\omega} = \frac{4\alpha}{\sigma(\kappa+1)} (1 - \exp(-N_f \sigma)) \times \sum_n \theta_n \left(\frac{1}{\rho_1 + \theta_n} - \frac{1}{\rho_2 + \theta_n}\right)^2 \left[1 - \cos(\rho_1 + \theta_n)\right]$$

where:

$$\rho_i=\omega d_1/2c(\gamma^{-2}+\xi_1^2),\quad \kappa=d_2/d_1,\quad \theta_n=\frac{2\pi n-(\rho_1+\kappa\rho_2)}{1+\kappa}>0,\quad \sigma=\sigma_1+\sigma_2\quad (\text{one foil}+\text{gap})$$

- Parameters are tuned to match test beam data for given momentum
- Procedure:
 - Generate TR photon at entrance window for entering electron
 - Determine absorbtion position in gas volume according to attentuation coefficient

Detector Response TR Photon Absorbtion

Absorbtion length

Number of absorbed

Detector Response TR photons: Comparison to Test Beam

Measurement for fiber/foam sandwich radiator

Parametrization for regular foil stack

Good description of data for fixed momentum

Detector Response TR photons: Comparison to Test Beam (II)

Detector Response

Momentum Dependence of TR photons

Fixed parameter set does not work for all momenta

 \rightarrow Adjust parameters in different momentum bins

Reconstruction Scheme

- Cluster finder in TRD
- Track reconstruction following global tracking scheme

Reconstruction Constructing the e⁻-Likelihood (1-dim, L-Q)

Use pulse height spectrum as probability distribution

Construct likelihood in each plane

$$L = \frac{P_e}{P_e + P_{\pi}} \quad P_{e,\pi} = \mathbf{n}_{i=1}^N P(Q_i | e, \pi)$$

Reconstruction Constructing the e⁻-Likelihood (2-dim, L-QX)

Reconstruction Implementation in ESDs

- Electron likelihood is being implemented in ESDs for the analysis of the PDC data
- TRD information in ESD:
 - Charge sum in each plane
 - Time bin of maximum cluster in each plane
 - Total: 12 numbers
- Under investigation:
 - Cluster quality cuts (overlapping clusters)

Summary and Outlook

