# **ITS reconstruction for HLT** J. Belikov, C.Cheshkov

**HLT workshop** 

1

# OUTLINE

- Motivation
- Clusterer, vertexer and tracker
- Tracking performance: efficiency, resolution
- Timing Performance
- Conclusions and Outlook

# MOTIVATION

- So far HLT code only for TPC
- ITS reconstruction is:
  - Needed for open charm trigger
  - Desirable for jet analysis
  - Is required to provide the vertex to TPC Hough transform tracker

# APPROACH

- We decided to use as a basis the off-line ITS reconstruction:
  - Already established algorithm
  - Robust and reliable
  - Need just to interface the HLT tracks from TPC and track them in ITS
- Is HLT tracks precision sufficient for ITS tracking?
- Which is the HLT TPC + ITS tracking performance?
- Timing performance?
- The results shown here are for the Hough Transform HLT tracks (with minor changes could be tried on Conformal Mapper tracks as well)

# **RECONSTRUCTION CHAIN**

- 1. ITS clusterer
- 2. ITS Z vertexer
- 3. HLT TPC tracker (Hough Transform)
- 4. ITS tracker



# **ITS Clusterer**

- Basically the off-line code with minor reorganizations:
  - Added an interface in case there is no RunLoader
  - Skipping of MC labels in case of raw data input
  - Avoided some unnecessary memory allocations (allocate the arrays once and only flush them before each new module)

#### **ITS Vertexer**

- The off-line code was modified so that:
  - Removed unnecessary intermediate step which goes from ITSclustersV2 -> ITSRecPoints
  - The clusters are split in bins of φ for faster access and filling into Z bins
  - The filling of Root histograms with Z bins is replaced by filling of an array of ints
  - Added interface in case of no RunLoader

#### **ITS Vertexer**

- As expected no change in the vertex finding performance
- Resolution on Z position:
   70μm (dN/dy=2000) -> 60μm (dN/dy=8000)
- About 30 times faster compared to the off-line code (for dN/dy~4000)

# **ITS Tracker**

- Make use of the off-line ITStrackerV2 with several modifications:
  - Clusters are sorted not only in Z, but also in  $\boldsymbol{\varphi}$
  - In Kalman filter, Root TMatrixD was replaced by explicit calculations
  - As a results the timing performance was improved by a factor of 5-10
- The tracking is done in 2 passes. One with and one without vertex constraint
- Note: Vertex constraint is applied only for cluster search and not for track params

# **ITS Tracking Procedure**

 HLT Hough tracks contained in the ESD are transformed into AliITStrackV2 and passed to the ITS tracker

- No dE/dx info -> all tracks assumed to be pions
- By definition the input params are constrained to the vertex
- The covariant matrix is filled with the averaged sigmas for the diagonal elements while all the correlations are set to 0
- As a last step in the tracking, tracks are propagated to the beam pipe and then to the vertex
- After the tracking is finished the AliITStrackV2 are transformed back to the HLT ESD tracks and stored (the vertex constraint is removed)

# **ITS tracking procedure**

- The problem related to the covariance matrix for Hough Transform tracks:
  - So far only diagonal elements (filled with average errors taken from comparison results)

#### • To do:

- From Hough Transform we have the size of the track peaks both in R $\phi$  and  $\eta$  directions
- Take these sizes (or fractions of them) as errors and covert them in order to fill the full cov.matrix
- It seems that even the present simplified solution works fine

#### **Tracking Efficiency**

The overall efficiency is quite satisfactory
ITS tracking almost completely "kills" double found Hough tracks
Good tracks list from AliITSComparisonV2 macro
Found tracks definition: >= 4 clusters in ITS



Note: Definitions of Hough and ITS tracking eff are quite different. Hough eff ploted only to guide the eye.

#### **Angular resolution**





The resolution on η and the emission angle Ψ are improved by a factor 2-2.5
Resolution is dominated by ITS ⇒ Very close to the off-line

#### **Impact Parameter Resolution**

•The impact params resolution is completely dominated by SPD and therefore we get the "offline" quality

#### •Example: for 1GeV/c track, the trans. impact param resolution is 60 microns.



#### **Timing Performance**

| dN/dy | Clusterer   | Vertexer | Tracker |
|-------|-------------|----------|---------|
| ~0    | 0.5s        | 20ms     | 0.15s   |
| 2000  | 1.3s        | 45ms     | 0.45s   |
| 4000  | <b>1.5s</b> | 85ms     | 0.95s   |
| 6000  | 1.75s       | 150ms    | 1.70s   |
| 8000  | 2.0s        | 210ms    | 2.70s   |

- Tests done on Intel Itanium II mashines (~1300 SpecInt's)
- Timings for the case of raw data input (no RunLoader, no MC labels)
- Still some "overheads" in the clusterer due to:
  - Filling of the clusters tree
  - Loops over all bins. Can be replaced by "jumping" method using dynamic arrays of pointers (similar to Hough space filling)

#### The code

- Everything is already in the HLT module inside AliRoot repository:
- One can try it by running RunHLTITS.C macro
- The macro will use an already produced AliESDs.root and will create AliESDits.root with updated by ITS tracking Hough tracks

# **Conclusions and Outlook**

 Both tracking and timing performances of the presented ITS tracking (+Hough TPC tracking) are quite satisfactory

#### ⇒ Fully acceptable for HLT

- To do:
  - Further optimization of the clusterer
  - Correct cov.matrix from HT
  - Check the performance on physics channels: D0->Kπ; Λ, Ξ decays; effect on jet resolution and efficiency