

Outline

Introduction

- Hough Transform (HT) approach:
 - Description of the algorithm
 - Practical implementation for fast filling of the Hough space
 - Hough space variables

Recent improvements

- Results:
 - Efficiency, fakes
 - Resolution
 - <u>Time consumption (!)</u>

Conclusions & Plans

Page 2

HLT workshop

Introduction

Hough Transform method

- Hough Transform method:
 - Transformation of TPC Digit coordinates into curve in the track parameter space (Hough space). The curve corresponds to all possible tracks the digit can belong to
 - The transformation is done in η bins
 - Assume that the tracks are coming from the primary vertex
 - Neglect multiply scattering and energy losses
 - Each space bin represents a track candidate
 - \Rightarrow one can define a certain "road" within a given TPC sector
 - The approach consists simply in counting of the number of TPC rows without a digit inside the track "road" #gaps

Page 4	HLT workshop	6/12/2004

Hough Transform method

- After the HT is finished, a simple peak finder runs over the Hough space in order to extract the track candidates
- The peak finder looks for neighbor bins with #gaps<N and identifies the peaks (track candidates)
- Track parameters are extracted by averaging the peak edge points
 - \Rightarrow track is guided by the cluster borders

Page 5	
--------	--

Hough Transform method

- Assuming ordered TPC digits (in time bins, pads, padrows)
 - \Rightarrow the algorithm offers big space for speeding up!
- HT is monotonic along the padrows
 - \Rightarrow do it only for the first and last (in pad index direction) digits which belong to a cluster and fill at once the corresponding ribbon in the HT space
- Stopping rule using already accumulated #gaps

Hough Space variables

Hough Space variables

Linear HT \Rightarrow Gain of 30-40% in the time consumption

Page 10	HLT workshop	6/12/2004

Hough Space variables

 Limits on Hough space variables correspond to a track with minimum Pt[GeV/c] = B_{field}[T] which crosses the middle of the TPC sector

• Hough space binning is fixed to ~ twice the pad size in the corresponding TPC rows $\Rightarrow 80(\alpha 1)x120(\alpha 2)x100(\eta)$

Page 11	HLT workshop	6/12/2004

Recent improvements

 All the recent changes are aimed to speed up the code and do not affect the algorithm efficiency

 There are no revolutionary improvement – all the changes give an effect of 30-50%

The overall speed-up factor is ~3

Page	12
------	----

HLT workshop

- Change in the order in which the readout patches are processed
- Choose an order which allows the earliest possible removal of track candidates (Hough space bins)
- Why patches 6 and 3 before others? Digits in patch 6 –
 horizontal lines in the Hough Space, in patch 3 vertical lines
 ⇒ the crossings of these lines gives sort of seeding

Recent improvements

Definitions

Tracking Efficiency

Inefficiency Sources

Page 18

HLT workshop

6/12/2004

Inefficiency Sources

Low Pt tracks

Tracks with 1.5<Pt<2 GeV/c

Ghost Tracks

Since the Hough space bin size ~1/Pt
 ⇒ ΔPt/Pt ~ Pt + const.(mult.scat.)
 ΔPt/Pt=(1.8xPt+1.0)% (B=0.5T)

σ(Ψ)=6.1mad; σ(η)=5.5x10⁻³

 No significant dependency on the event multiplicity can be seen – need more statistics

|--|

Timing performance

- The benchmarks were done on Itanium II machines (~1300 SpecInt's) the present Alice GDCs
- Code compiled with icc8.0 with –O3
- Almost a factor of 3 improvement due to the latest improvements in the filling of the Hough space
- LUT initialization is done of event-by-event basis \Rightarrow more flexibility if one wants to adapt the HT resolution depending on the trigger

dN/dy	~0	2000	4000	6000	8000
LUT Init			120ms		
Hough Transform	0.7s (3ms/patch)	3.3s (15ms/patch)	5.9s (27ms/patch)	8.7s (40ms/patch)	11.3s (53ms/patch)
Page 22		HLT	workshop		6/12/2004

Conclusion and Outlook

- Hough Transform tracker shows very good efficiency and resolution (see also Constantin's transparencies on jet analysis)
- Taking into account the presented timing performance, one should consider seriously HT as a possible online tracking for HLT (details in my talk on online monitoring)
- The work on adding dEdx reconstruction is underway (see tomorrow's talk)
- Important feedback expected from the physics analysis of PDC'04 data
- The algorithm (together with HLT ITS tracker) will be tested in close to real conditions during the Alice computing DC in 2005

Page 23	HLT workshop	6/12/2004