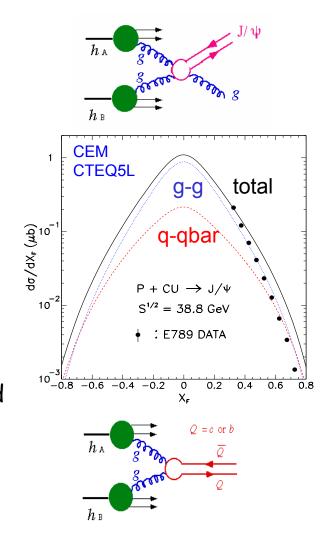



## Quarkonia Production in p-A Collisions Mike Leitch - Los Alamos National Laboratory leitch@lanl.gov Hard Probes 2004, Ericeira, Portugal -- 4 -10 November, 2004

- production
  - mechanisms
  - cross section & polarization
  - complications
- nuclear effects
  - shadowing
  - p<sub>⊤</sub> broadening
  - absorption
  - parton energy loss
  - contrasting open & closed charm
- summary








#### J/ψ & open-charm production, parton level structure & dynamics

## Production of heavy vector mesons, e.g. $J/\Psi,\Psi'$ and $\Upsilon$

- gluon fusion dominates (NLO calculations add more complicated diagrams but still mostly with gluons)
- production: color singlet or octet  $c\overline{c}$ : absolute cross section and polarization?
- hadronization time (important for pA nuclear effects)
- complications due to substantial feed-down from higher mass resonances, e.g. from  $\chi_{\text{c}}$  Open charm
- shares sensitivity to gluon distributions and initial-state effects such as  $p_{\mathsf{T}}$  broadening, initial-state energy loss
- but different hadronization



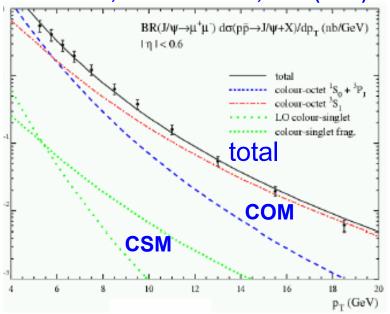


### Production & Hadronization into J/ψ

#### <u>Various J/ψ hadronization models:</u>

Color-singlet model (CSM)

- $c\overline{c}$  pair in color-singlet state, with same quantum numbers as  $J/\psi$  forms into  $J/\psi$
- Predicts no polarization

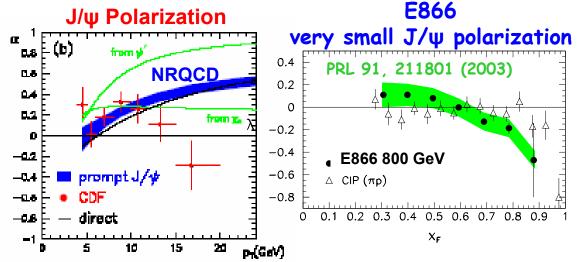

#### Color-octet model (COM)

- $J/\psi$  formed from  $c\overline{c}$  color-octet state with one or more soft gluons emitted
- Color octet matrix elements expected to be universal
- · Predicts transverse polarization at high  $p_{\mathsf{T}}$  of  $J/\psi$

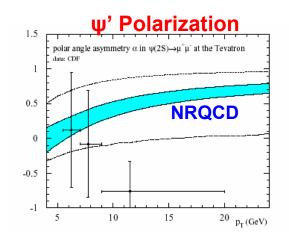
#### Color-evaporation model (CEM)

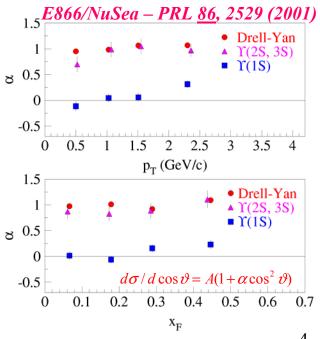
- Assumes a certain fraction of  $c\overline{c}$  (determined from experimental data) form  $J/\psi$  by emission of several soft gluons
- Predicts no polarization

#### hep-ph/0311048 & Beneke, Kramer PRD 55, 5269 (1997)




CDF Data first uncovered short-comings of CSM





### J/ψ Production—Polarization

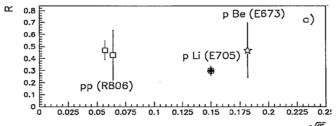
Color Octet Model predicts  $J/\psi$  polarization at large  $p_T$  - NOT SEEN in data



- CDF and Fermilab E866 data show little polarization of  $J/\psi$  opposite trend from predictions
- But  $\Upsilon$  maximally polarized for (25+35) but not (15)
- Is feed-down washing out polarization?
  (~50% of 15 from feed-down)
- NRQCD predicts 0.25 <  $\lambda$  < 0.7 (feed-down from  $\chi$  states included).






11/8/2004

Mike Leitch

4



#### Feeding of J/ψ's from Decay of Higher Mass Resonances



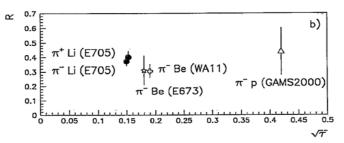
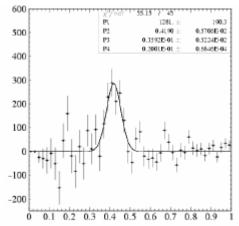




FIG. 3. Fraction of  $J/\psi$  produced via radiative  $\chi$  in 300 GeV/c (a) proton and (b)  $\pi^{\pm}$  <sup>7</sup>Li interactions.

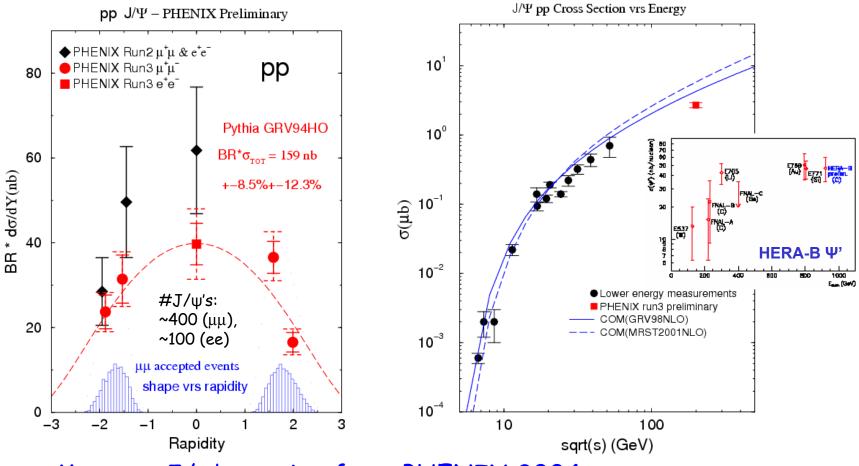


HERA-B  $\chi_c/J/\psi = 0.21\pm0.05$ from 15% of available statistics  $(\sqrt{s_{NN}} = 42 \text{ GeV})$ 

$$\Delta m \; (\text{GeV/c}^2) = m_{\chi} \text{-} m_{J/\psi}$$

E705 @ 300 GeV/c, PRL 70, 383 (1993)

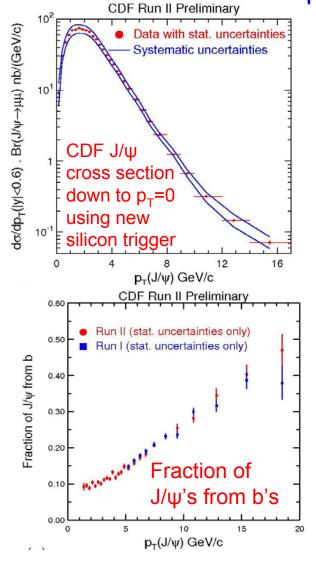
Large fraction of  $J/\psi'^s$  are not produced directly

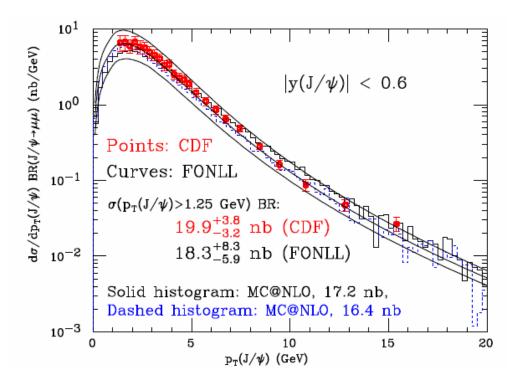

|                                  | Proton | Pion |  |  |  |  |  |
|----------------------------------|--------|------|--|--|--|--|--|
| $\chi_{,1,2} \rightarrow J/\Psi$ | 30%    | 37%  |  |  |  |  |  |
| $\Psi' \to J/\Psi$               | 5.5%   | 7.6% |  |  |  |  |  |

#### Effect on Nuclear dependence:

- Nuclear dependence of parent resonance, e.g.  $\chi_{\mathcal{C}}$  is probably
- different than that of the  $J/\psi$
- e.g. in proton production ~21-30% of  $J/\psi'^s$  will have effectively stronger absorption because they were actually more strongly absorbed (larger size)  $\chi_{\mathcal{C}}$ 's while in the nucleus




## PHENIX - $J/\psi$ cross section versus rapidity & $\sqrt{s}$




More pp  $J/\psi$ 's coming from PHENIX 2004 run (~300/muon arm) + many more expected in 2005 ( $\Psi$ ' so far out of reach with present RHIC luminosities)



## CDF Run II J/Psi vrs $p_T$ now down to $p_T$ =0 hep-ex/0408020

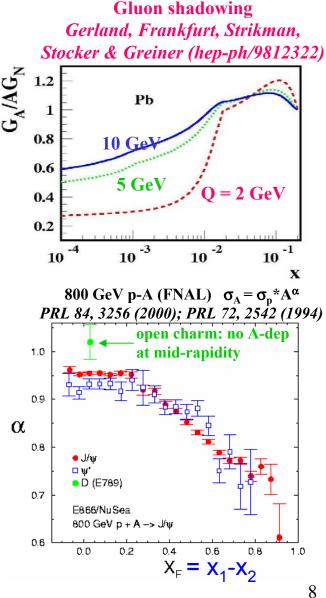




Current NLO QCD calculations can describe observed CDF J/ψ cross sections Cacciari, Frixione, Mangano, Nason, Ridolfi, hep-ph/0312132 - FONLL or MC@NLO.

 but I guess they still don't get (lack of ) polarization correct??

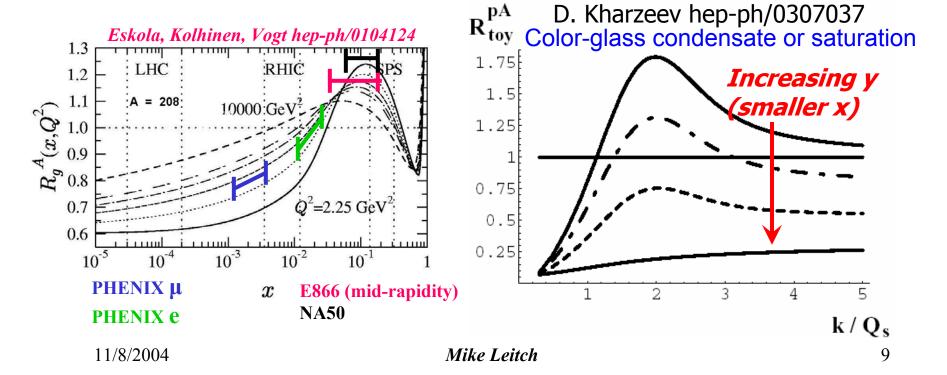



#### Nuclear modification of parton level structure & dynamics

# Modification of parton momentum distributions of nucleons embedded in nuclei

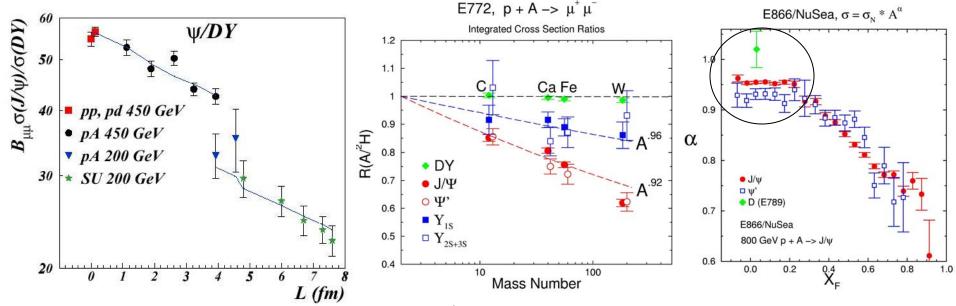
- e.g. shadowing depletion of lowmomentum partons (gluons)
- color glass condensate specific/fundamental model that gives gluon shadowing in nuclei

#### Nuclear effects on parton "dynamics"


- energy loss of partons as they propagate through nuclei
- and (associated?) multiple scattering effects (Cronin effect)
- absorption of  $J/\psi$  on nucleons or comovers; compared to no-absorption for open charm production






## Gluon Shadowing

- Shadowing of gluons  $\rightarrow$  depletion of the small  $\times$  gluons
- Very low momentum fraction partons have large size & number density, overlap with neighbors, and fuse; thus enhancing the population at higher momenta at the expense of lower momenta
- Or alternate but equivalent picture: coherent scattering resulting in destructive interference for coherence lengths longer than the typical intra-nucleon distance





#### J/ψ at fixed target: Absorption at mid-rapidity



- Breakup by nucleus of J/ψ or pre-J/ψ (ccbar) as it exits nucleus
- Power law parameterization  $s = s_N * A^a$

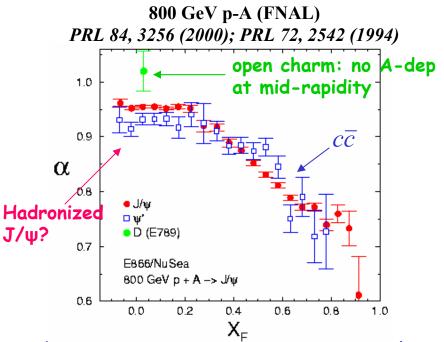
$$a = 0.92$$
 (E772, PRL 66 (1991) 133) (limited  $p_T$  acceptance bias)

$$a = 0.919 \pm 0.015$$
 (NA38, PLB 444 (1998)516)

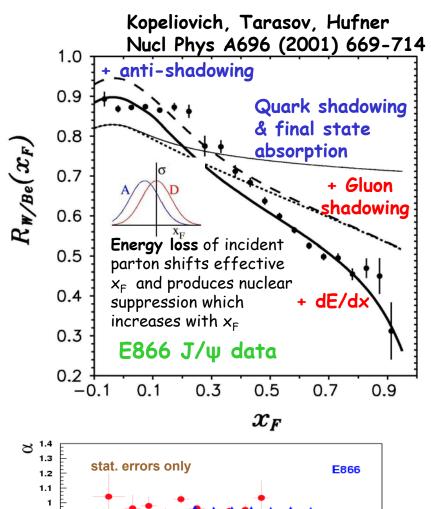
$$\alpha = 0.954 \pm 0.003$$
 (E866 @  $x_F = 0$ . PRL 84 (2000),3258 )

$$\alpha = 0.941 \pm 0.004$$
 (NA50, QM2004)

- Absorption model parameterization
  - $\sigma$  = 6.2 mb (NA38/50/51) to 4.3 ± 0.3 mb (NA50, QM2004)
- Small difference between J/ $\psi$  and  $\psi(2S)$  (E866) a(J/ $\psi$ ) a( $\psi(2S)$ ) ~ 0.02-0.03 @  $x_F$  = 0 (NA50  $\sigma^{\psi}$ '  $\sigma^{J/\psi}$  = 3.5 ± 0.7 mb)




### J/ψ suppression in pA fixed-target


0.9 0.8

0.6

Mike .

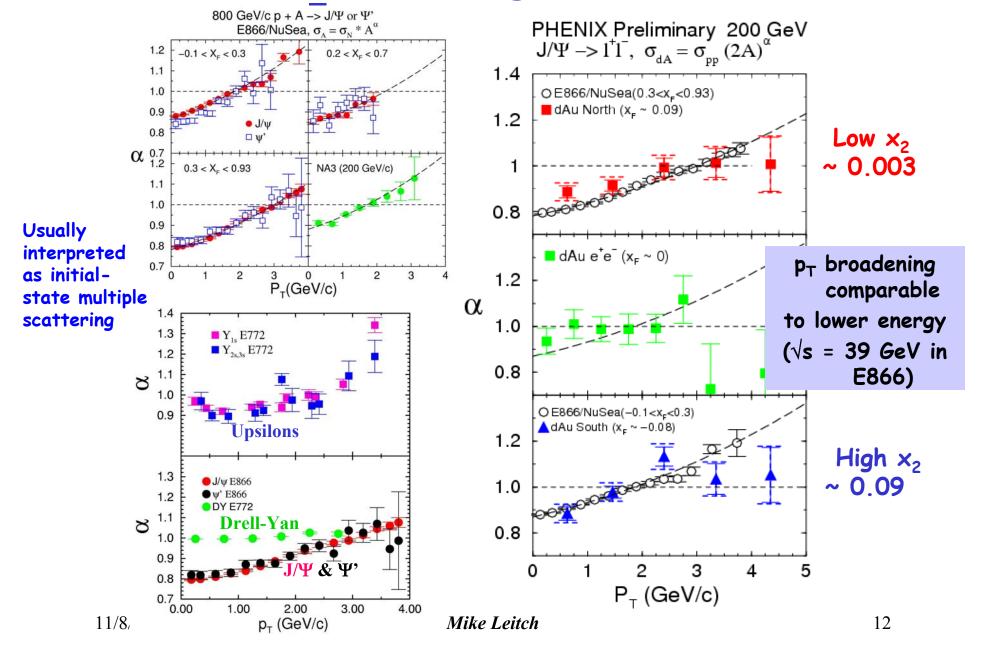


- $J/\Psi$  and  $\Psi$  similar at large  $x_F$  where they both correspond to a  $c\overline{c}$  traversing the nucleus
- but  $\Psi'$  absorbed more strongly than  $J/\Psi$ near mid-rapidity  $(x_F \sim 0)$  where the resonances are beginning to be hadronized in nucleus
- open charm not suppressed at  $x_F \sim 0$ ; what about at higher  $x_F$ ? 11/8/2004



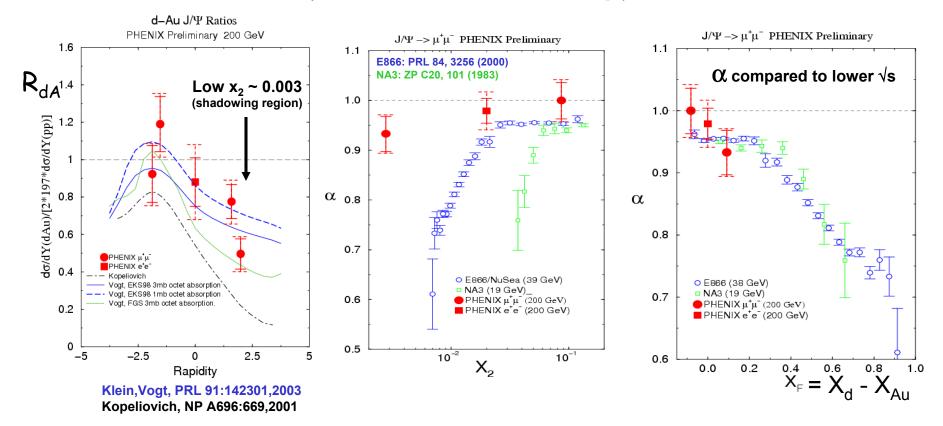
**HERA-B** preliminary (C,W targets)

0.2


0.3

 $\mathbf{x}_{\mathsf{F}}$ 

11




## P<sub>T</sub> Broadening for J/ψ's



## Los Alamos

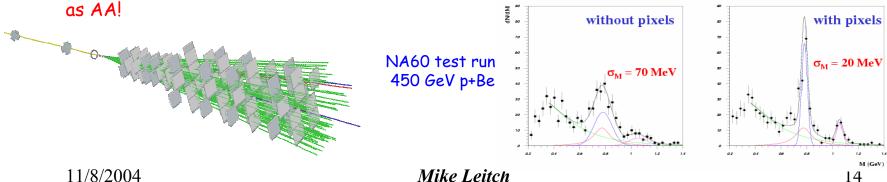
# S J/ψ nuclear dependence vrs rapidity, x<sub>Au,</sub> x<sub>E</sub> PHENIX compared to lower energy measurements



Data favors (weak) shadowing + (weak) absorption ( $\alpha$  > 0.92)

With limited statistics difficult to disentangle nuclear effects

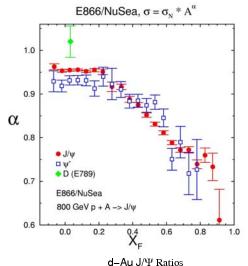
Will need another dAu run! (more pp data also)

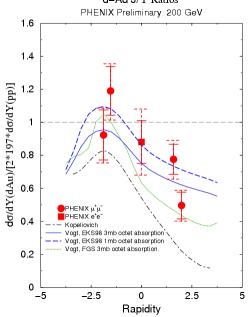

Not universal versus  $X_2$ : shadowing is not the story.

BUT does scale with  $x_F!$  - why? (Initial-state gluon energy loss -which goes as  $x1\sim xF$  - expected to be weak at RHIC energy)



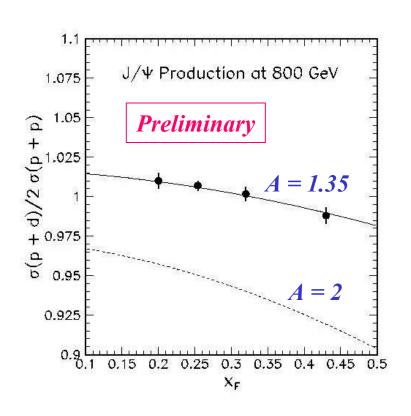
#### Some Critical Onia Physics Issues

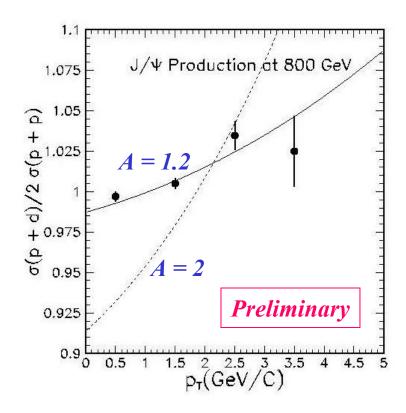

- Production & absorption
  - octet, singlet → absorption differences, polarization?
  - feed-down dilution of polarization  $\rightarrow$  need to de-convolute  $J/\psi$ ,  $\psi'$ ,  $\chi_c$
  - mid-rapidity absorption is combination of physical and c-cbar states  $\to$  need to understand both vrs  $x_{\rm F}$  and  $\sqrt{s}$
  - why does  $J/\psi$  nuclear dependence scale with  $x_F$  (& not with  $x_2$ )?
  - why is  $\Upsilon_{2s+3s}$  polarized, but not  $\Upsilon_{1s}$  &  $J/\psi$ ? And what about  $\psi'$  polarization?
- If above were understood better, then:
  - can go after gluons and their nuclear modification (shadowing, initial-state energy loss)
  - have a firm baseline for A-A (QGP studies with onia)
- · What can NA60 contribute (from a non-NA60 member)?
  - excellent mass resolution, separation of  $\psi'$  (better for polarization since no feed-down) & add  $\chi_{\mathcal{C}}$
  - high-precision, broad  $x_F$ ,  $p_T$  coverage at several new  $\sqrt{S}$ . By comparisons with E866, Hera-B, NA3 unravel scaling mystery, understand absorption, etc.
    - coverage up to  $x_F \ge 0.5$  and  $x_F < 0$  important  $\to$  can be obtained by moving dimuon spectrometer back from target, and via Pb-Be collisions
  - $\cdot$  problem for clear physics comparisons, SPS & LHC both need pp, pA baseline at same  $\sqrt{S}$






## Summary & Comments


- Progress on onia production cross sections and polarizations but still doesn't seem to be well understood
  - causes uncertainties in the understanding of nuclear effects (e.g.  $J/\psi$  absorption)
- Weak shadowing has been observed at RHIC for the  $J/\psi$  in dAu collisions but statistics are low, so will need another dAu run
  - but scaling with  $x_F$  (and not with  $x_2$ ) is still a puzzle!
- Complementary studies of open charm and of other onia are also critical
  - no apparent nuclear effects for open charm in d-Au (at mid-rapidity at least)
  - upgrades to the RHIC detectors to allow exclusive measurements of open charm and beauty are critical for completing the physics puzzle
  - and NA60 can contribute now, particularly if priority is placed on pA (and Ap) measurements over broad ranges in  $x_F$  and  $p_T$





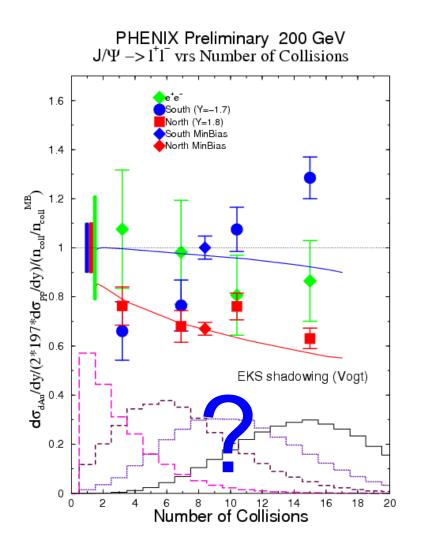


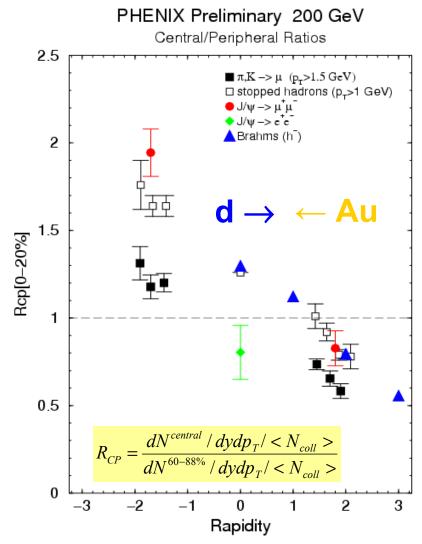

#### E866 - J/Ψ Nuclear dependence even for Deuterium/Hydrogen





Nuclear dependence in deuterium seems to follow the systematics of larger nuclei, but with an effective A smaller than two.

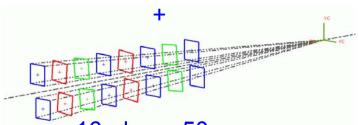

From fits to E866/NuSea p + Be, Fe, W data:


$$\alpha(x_F) = A * (1 - .052x_F - .034x_F^2)$$
  

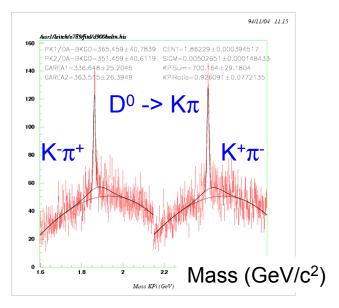
$$\alpha(p_T) = A * (1 + .06p_T + .011p_T^2)$$

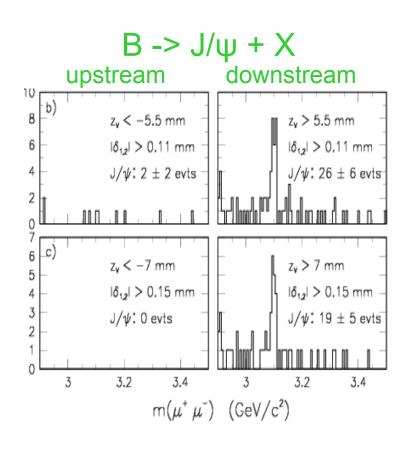


### Centrality Dependence - new at RHIC







# Fermilab E789: $D^0$ & $B \rightarrow J/\psi X$ (charm & beauty using silicon)

#### Dimuon spectrometer



16-plane, 50μm pitch/8.5k strip silicon vertex detector







## BELLE – Double Charm!

PRL 89, 142001 (2002).

$$\begin{split} \left. \frac{\sigma(e^+e^- \to J/\psi c\bar{c})}{\sigma(e^+e^- \to J/\psi X)} \right|_{P_{J/\psi} > 2.0 GeV/c} &= \frac{0.5 (N_{D^0} + N_{D^+} + N_{D_s^+} + N_{\Lambda_c^+}) + N_{(c\bar{c})_{res}}}{N_{J/\psi}} \\ &= 0.82 \pm 0.15 \pm 0.14 \end{split}$$

 $\Rightarrow J/\psi c \bar{c}$  cross section is an order of magnitude larger than predictions and contradicts the NRQCD expectation that  $J/\psi c \bar{c}$  is small (same for  $J/\psi \eta_c$ )

For e<sup>+</sup>e<sup>-</sup> collisions at the energy of the Upsilon(4S)

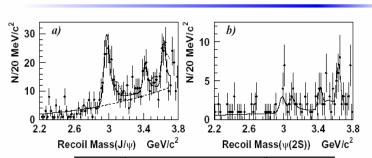
Check Form Fields and Comments..

#### Double charmonium production

Search for  $e^+e^- \to J/\psi + (c\bar c)$  production, where the additional  $c\bar c$  pair fragments into either charmonium or charmed hadrons.

- PRL 89, 142001 (2002) with 46.2/fb
- LP03-274 (BELLE-CONF-0331) with 101.8/fb

Study  $J/\psi$  recoil mass spectrum around  $M_{recoil}\sim$  3 GeV/c² :  $(M_{recoil}=((E_{CMS}-E_{J/\psi})^2-p_{J/\psi}^2)^{1/2})$ 


- Constrain  $J/\psi$  into nominal mass to improve resolution
- Verify recoil mass scale using  $e^+e^- \to \psi(2S)\gamma$ ,  $(\psi(2S) \to J/\psi\pi^+\pi^-)$  for calibration : recoil mass bias  $< 3 \text{ MeV/c}^2$
- fit includes all known charmonium :

$$\eta_c$$
,  $J/\psi$ ,  $\chi_{c0}$ ,  $\chi_{c1}$ ,  $\chi_{c2}$ ,  $\eta_c(2S)$ ,  $\psi(2S)$ 

Masses of η<sub>c</sub>, χ<sub>c0</sub>, η<sub>c</sub>(2S) free

Beauty 2003 - p.2/25

#### Double charmonium production



| $(c\overline{c})_{res}$ | N (evts)     | M [GeV/c²]        | $\sigma$ | N (evts) | $\sigma$ |
|-------------------------|--------------|-------------------|----------|----------|----------|
| $\eta_c$                | $175 \pm 23$ | $2.972 \pm 0.007$ | 9.9      | 15 ± 7   | 2.6      |
| $J/\psi$                | -9 ± 17      | fixed             | -        | 12 ± 7   | -        |
| $\chi_{c0}$             | $61 \pm 21$  | $3.409 \pm 0.010$ | 2.9      | 18 ± 9   | 2.4      |
| $\chi_{c1} + \chi_{c2}$ | -15 ± 19     | fixed             | -        | 7 ± 9    | -        |
| $\eta_c(2S)$            | $107 \pm 24$ | $3.630 \pm 0.008$ | 4.4      | 31 ± 10  | 3.7      |
| $\psi(2S)$              | -38 ± 21     | fixed             | -        | -4 ± 7   | -        |