# High p<sub>T</sub> hadron suppression in A+A collisions: from SPS to RHIC

# HARD PROBES'04

Ericeira, Portugal - Nov 7th, 2004

#### **David d'Enterria** Nevis Labs, Columbia University, NY

### **Overview**

- Motivation: High  $p_{\tau}$  in A+A collisions as a probe of the properties of QCD media (QGP, CGC) via p+p  $\leftrightarrow$  p,d+A  $\leftrightarrow$  A+A comparison
- High  $p_T$  A+A hadroproduction from  $\sqrt{s_{NN}} = 20$  to 200 GeV:
- SPS √s<sub>NN</sub>≈20 GeV results revisited: p+p reference, indications of suppression, comparison to E<sub>loss</sub> models
- RHIC results at  $\sqrt{s_{NN}} = 62.4 \text{ GeV}$ : p+p references, preliminary R<sub>AA</sub>, comparison to E<sub>loss</sub> models
- A few new RHIC results at  $\sqrt{s_{NN}} = 200 \text{ GeV}$ : very high  $p_T \pi$ ,  $\eta$  suppression, data vs.  $E_{loss}$  models
- Excitation function of high  $p_{T}$  suppression.
- Summary. 3 lessons learnt.



[Experimental handle: p+p]







- Approach: Study modifications (dN/dp<sub>T</sub>, particle composition, dN<sub>pair</sub>/dφ) of high p<sub>T</sub> in A+A with respect to p+p, p+A to learn about the properties of QCD media:
  - "Quark Gluon Plasma" (final-state A+A) and/or
  - "Color Glass Condensate" (initial-state A).

AGS&RHIC Users Meeting, May 12th 2004

David d'Enterria (Columbia Univ.)

# Expected hard scattering yields in A+A

#### Production yields calculable theoretically via perturbative QCD:

"Factorization theorem":

 $d\sigma_{AB \to hX} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{f}_{a|A}(\mathbf{x}_{a}, \mathbf{Q}_{a}^{2}) \otimes \mathbf{f}_{b|B}(\mathbf{x}_{b}, \mathbf{Q}_{b}^{2}) \otimes d\sigma_{a|b| \to cd} \otimes \mathbf{D}_{h|c}(\mathbf{z}_{c}, \mathbf{Q}_{c}^{2})$ 

Independent scattering of "free" partons:  $f_{a/A}(x,Q^2) = A f_{a/p}(x,Q^2)$ 

A+B = "simple superposition of p+p collisions"

$$d\sigma_{AB \rightarrow hard} = A \cdot B \cdot d\sigma_{pp \rightarrow hard}$$

At impact parameter b:

$$dN_{AB \rightarrow hard} (b) = T_{AB}(b) \cdot d\sigma_{pp \rightarrow hard}$$

$$geom. nuclear overlap at b$$

$$T_{AB} \sim \# NN \text{ collisions ("Ncoll scaling")}$$



#### **Nuclear Modification Factor:**



# RHIC A+A "breakthroughs"(\*) in the high p<sub>τ</sub> sector

(\*) as given by PRL covers

# (1) High $p_T$ suppression in central Au+Au @ 200 GeV





- R<sub>AA</sub> << 1: well below pQCD (collinear factoriz.) expectations for hard cross-sections
- Consistent with "jet quenching" expectations for leading hadrons

## (2) High $p_T$ enhancement in d+Au @ 200 GeV





- d+Au @ RHIC shows "Cronin"  $p_T$ broadening as seen at lower  $\sqrt{s}$  p+A
- Suppression in central Au+Au due to final-state effects

#### much of the excitement lies in the $\sqrt{s}$ dependence ...

 $R_{AA}(\pi^0)$  in central A+A collisions (as of ~1 year ago):



A.L.S.Angelis, PLB 185, 213 (1987) WA98, EPJ C 23, 225 (2002) PHENIX, PRL 88 022301 (2002) PHENIX, PRL 91, 072303 (2003)

• CERN-SPS: Pb+Pb central ( $\sqrt{s_{NN}}$  = 17.3 GeV): strong Cronin enhancement

• CERN-ISR:  $\alpha + \alpha$  ( $\sqrt{s_{NN}}$  = 31 GeV): Cronin enhancement (small system)

• RHIC: Au+Au ( $\sqrt{s_{NN}}$  = 130, 200 GeV): x 4-5 suppression !

### A+A at SPS, ISR $\cong$ fixed-target p+A at Fermilab ...



Std. argument: "Initial-state effects dominate hard hadro-production in A+A at SPS energies. Final-state effects do not play a significant role."

• How can it be, however, that:  $\epsilon_{Bj}^{SPS} \approx 3 \text{ GeV/fm}^3 (\Rightarrow dN^{q+g}/dy \approx 2 \cdot \epsilon^{3/4} \cdot \tau_0 \cdot A_T \approx 600)$ and yet there is no high  $p_T$  suppression at SPS !? (whereas there is a factor x5 suppression at RHIC w/  $\epsilon_{Bj}^{RHIC} \approx 5 \text{ GeV/fm}^3$ )

# High p<sub>⊤</sub> in A+A at SPS (√s<sub>NN</sub> ≈ 20 GeV): Cronin or suppression ?

### High p<sub>T</sub> A+A spectra @ CERN-SPS



• Spectra go up to  $p_{\tau}$ ~3.5-4 GeV/c (large stat. uncertainties in higher  $p_{\tau}$  bins).

Evidence of hard scattering processes: power-law deviation from "soft" (exponential) behaviour observed above p<sub>τ</sub>~2 GeV/c.

## High p<sub>τ</sub> baseline p+p spectra @ CERN-SPS ?

#### NO p+p $\rightarrow \pi$ +X reference measurement at SPS Pb+Pb energy ( $\sqrt{s}$ = 17.3 GeV)



# Enhanced high $p_T$ production @ CERN-SPS ?

R<sub>AA</sub> for central Pb+Pb constructed using 2 different <u>p+p parametrizations</u>:



# Enhanced high p<sub>T</sub> production @ CERN-SPS ?

•  $R_{AA}$  for central Pb+Pb constructed using 2 different <u>p+p parametrizations</u>:



#### $p+p \rightarrow \pi + X @ \sqrt{s} \approx 20 \text{ GeV}$ : data vs. references

• WA98, Wang&Wang p+p parametrizations confronted to  $\pi$  data ( $\sqrt{s}$  = 16 – 20 GeV):



### New p+p $\rightarrow \pi$ +X reference @ $\sqrt{s} \approx 20$ GeV

• New parametrization [Blattnig et al. PRD62 (2000) 094030] versus p+p data  $\sqrt{s} = 16 - 20$  GeV:



• sqrt(s) dependence ( $\sqrt{s} = 16 - 20$  GeV) of yields correctly reproduced.

#### "New" nuclear modification factors at SPS

• High  $p_{\tau} \pi^0$  production in ~0 –10% central A+A at SPS and ISR energies:

![](_page_19_Figure_2.jpeg)

... not enhanced but consistent with "collision scaling" ( $R_{AA} \sim 1$ ) above  $p_T \sim 2$  GeV/c

## Indications of high $p_T$ suppression @ SPS

• Centrality evolution of high  $p_{\tau} \pi^0$  production (WA98 Pb+Pb  $\sqrt{s}$  = 17.3 GeV):

![](_page_20_Figure_2.jpeg)

## Indications of high $p_T$ suppression @ SPS

• Centrality evolution of high  $p_{\tau} \pi^0$  production (WA98 Pb+Pb  $\sqrt{s}$  = 17.3 GeV):

![](_page_21_Figure_2.jpeg)

#### High $p_{\tau}$ @ SPS: data vs. theory

New R<sub>AA</sub> at SPS agree better with SPS parton energy loss predictions:

![](_page_22_Figure_2.jpeg)

## High $p_{\tau}$ @ SPS: data vs. theory

• New R<sub>AA</sub> at SPS agree with parton energy loss calculations [I.Vitev nucl-th/0404052] in moderately dense system:  $dN^{g}/dy \sim 400-600$  (more consistent with estimated  $\epsilon_{Bi} \sim 3$  GeV/fm<sup>3</sup>).

![](_page_23_Figure_2.jpeg)

## Measuring a high $p_{\tau}$ p+p reference @ $\sqrt{s} \approx 20$ GeV ?

| Option (1):                   | Concerning NA49 high-pt: With the existing data you could not do very much. The statistics in p+p is sufficient for h- up to pt=2-2.5 GeV/c, as                                                                                                                                                                                                                            |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPS-NA49 ?                    | it looks. But in the context of the NA49 future an extension of these measurements is proposed                                                                                                                                                                                                                                                                             |
|                               | However, an effort in this direction <u>would require an upgrade of the NA49</u><br><u>DAO,</u> since you would need to collect like 100M p+p events to make a<br>difference. So, it is feasible but difficult,                                                                                                                                                            |
|                               | Christoph Blume<br>University of Frankfurt/Main, IKF                                                                                                                                                                                                                                                                                                                       |
| SPS- <mark>NA57 / WA97</mark> | NA57 has data for Pb-Pb and p-Be (almost pp) at 160A GeV/c and at 40A GeV/c;<br>WA97, which is basically the same experiment has also p-Pb at 160A GeV/c.<br>The best thing would be to get R_AA = Pb-Pb/p-Be and R_pA = p-Pb/p-Be.<br>Of course the pt reach in p-Be might be quite limited<br>At the moment we are trying to concentrate on Rcp for Pb-Pb at 160A GeV/c. |
|                               | we will try to do it separately for h^-, K <sup>O</sup> and Lambda(+LambdaBar).<br>Concerning the pt reach, we still didn't finish to include the whole<br>statistics we have, but it will be something on the ballpark of the<br>WA98 pi <sup>O</sup> data.                                                                                                               |
|                               | <br>Andrea Dainese - ALICE Collaboration -                                                                                                                                                                                                                                                                                                                                 |
|                               | -<br>Universita` degli Studi di Padova<br>tel. +39 049 827 7106                                                                                                                                                                                                                                                                                                            |

Option (2): RHIC Au+Au, p+p run at √s ≈ 20 GeV (feasible, though would need more support from RHIC community, long runs required to collect stat !)

# Au+Au @ RHIC: High $p_T$ suppression at $\sqrt{s_{NN}} = 62.4$ GeV

#### High p<sub>T</sub> Au+Au spectra @ RHIC 62.4 GeV

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

27

# High $p_T$ baseline p+p spectra @ 62.4 GeV ?

- No concurrent p+p @ 62.4 GeV measured at RHIC in Run-4 ...
- p+p @ 62–63 GeV measured at ISR:  $\pi^0$  (8),  $\pi^{\pm}$ (4), charged hadrons (2)

![](_page_27_Figure_3.jpeg)

#### $p+p \rightarrow \pi + X$ spectra @ 62.4 GeV are <u>not</u> consistent

![](_page_28_Figure_1.jpeg)

#### Final corrected p+p $\rightarrow \pi$ +X spectra @ 62.4 GeV

![](_page_29_Figure_1.jpeg)

### Parametrized p+p $\rightarrow \pi$ +X reference @ $\sqrt{s}$ = 62.4 GeV

![](_page_30_Figure_1.jpeg)

### Parametrized p+p $\rightarrow$ h<sup>±</sup> +X reference @ $\sqrt{s}$ = 62.4 GeV

Reasonable agreement (within ~30% norm. uncertainties) of PHOBOS/STAR/PHENIX h<sup>+/-</sup> parametrizations and existing data

![](_page_31_Figure_2.jpeg)

# High $p_T$ suppression in central Au+Au @ 62.4 GeV

#### Charged hadrons

Neutral & charged pions

![](_page_32_Figure_3.jpeg)

#### High $p_{T}$ Au+Au @ 62.4 GeV : data vs theory

![](_page_33_Figure_1.jpeg)

#### High $p_{T}$ Au+Au @ 62.4 GeV : data vs theory

![](_page_34_Figure_1.jpeg)

# Au+Au @ RHIC: High p<sub>T</sub> suppression at $\sqrt{s_{NN}}$ = 200 GeV

# some more recent stuff(\*) ...

[(\*) More details in Henner Buesching's talk tomorrow]

HARD PROBES '04, Ericeira, PT, Nov. 7 2004

David d'Enterria (Columbia Univ.) 36

#### Latest high p<sub>T</sub> Au+Au spectra @ RHIC 200 GeV

![](_page_36_Figure_1.jpeg)

• Measured spectra well in the perturbative domain:  $p_{\tau}^{max} \sim 15$  (10) GeV/c

#### Latest high p<sub>T</sub> baseline p+p spectra @ 200 GeV

![](_page_37_Figure_1.jpeg)

• Truly perturbative spectra ( $p_T^{max} = 17 \text{ GeV/c}$ ) well described by NLO pQCD

### Au+Au vs. p+p @ 200 GeV (π<sup>0</sup>)

#### Au+Au $\rightarrow \pi^0 X$ (peripheral)

![](_page_38_Figure_2.jpeg)

Peripheral data agree well with p+p (data&pQCD) plus N<sub>coll</sub> scaling

Strong suppression in central Au+Au collisions

Au+Au  $\rightarrow \pi^0 X$  (central)

## Latest R<sub>AA</sub> in Au+Au @ 200 GeV

![](_page_39_Figure_1.jpeg)

- Au+Au central: Strong suppression (R<sub>AA</sub>~0.2)
- Au+Au semi-central: Suppression (R<sub>AA</sub>~0.4)
- Au+Au peripheral: consistent w/ N<sub>coll</sub> scaling (R<sub>AA</sub>~0.9)

# Latest R<sub>AA</sub> @ 200 GeV

![](_page_40_Figure_1.jpeg)

• Coincident suppression pattern for  $\pi^0$  and  $\eta$ : magnitude,  $p_{\tau}$  dependence

Agreement with parton energy loss (GLV) predictions in dense medium (flat behaviour up to the highest p<sub>T</sub> values measured so far)

# Excitation function of high p<sub>T</sub> suppression from SPS to RHIC

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_1.jpeg)

#### Summary

- R<sub>AA</sub> for high p<sub>T</sub> hadroproduction at CERN-SPS energies revisited using a new p+p reference:
  - (1)  $R_{AA}(cent) \approx 1$ . No Cronin.  $R_{AA}(cent) < R_{AA}(periph)$  consistent w/ factor ~1.6 suppress.
  - (2) (new)  $R_{AA}$  consistent w/ (old)  $R_{cp}$
  - (3)  $R_{AA}(cent)$  in agreement w/ parton  $E_{loss}$  calculations in dense system: dN<sup>g</sup>/dy  $\approx$  500 (consistent with estimated  $\epsilon_{Bi} \approx$ 3 GeV/fm<sup>3</sup>).
  - (4) (Re)measurement of A+A, p+p at  $\sqrt{s_{NN}} \approx 20$  GeV desirable (look for onset of suppr.)
- $R_{AA}$  at high  $p_T$  in Au+Au  $\sqrt{s} = 62.4$  GeV
  - (1) Current ISR-averaged p+p refs. have uncertainties of order ~30%.
  - (2)  $R_{AA}(cent)$  in agreement w/ parton  $E_{loss}$  in dense system:  $dN^{g}/dy \approx 800$
  - (3) More quantitative study of high  $p_{\tau}$  suppression requires actual measurement of p+p at at  $\sqrt{s}$  = 62.4 GeV (RHIC Run-5 ?).
- Latest  $R_{AA}$  at high  $p_T$  in Au+Au  $\sqrt{s} = 200 \text{ GeV}$ 
  - (1) Universal suppression for all hadrons ( $\pi^0$ ,  $\eta$ ,  $h^{\pm}$ ) above  $p_{\tau}$ ~5 GeV/c.
  - (2) Very high  $p_{T}$  suppression ( $p_{T}$ >10 GeV/c) in agreement w/ parton  $E_{loss}$  predictions
- Excitation function of suppression described by parton E<sub>loss</sub> models

## Corollary

# <u>3 lessons learnt:</u>

- (1) At CERN SPS energies one is likely creating the same (less dense) strongly interacting matter as at RHIC. Indications of high  $p_T$  suppression (need actual exp. confirmation !) are now more consistent w/ previous observations: J/ $\psi$  suppression,  $\epsilon_{Bi}$ , ...
- (2) If we want to constraint / challenge parton energy loss models (and we want to, in order to learn more about the properties of the dense QCD medium produced), we need more differential observables than (ratios of) spectra [R<sub>AA</sub> vs. azimuthal angle, ...].
- (3) If we want to characterize quantitatively the properties of the produced media in A+A collisions (QGP,CGC), we need a concurrent measurement of the p+p baseline at the same sqrt(s) !
  [This applies for RHIC 62.4 GeV, but also for 5.5 TeV at CERN-LHC where we need to convince the "Higgs beyond SM SUSY..." community to run at ~1/3 of the nominal (maximal) p+p collision energy].

# backup slides ...

#### Unsubstracted $\pi^0$ "contaminations" at ISR (1)

All but one measurement at ISR didn't substract the  $\eta$  and direct- $\gamma$ 

"World average"  $\eta/\pi^0 \sim 0.45$  ratio at high  $p_{\tau}$  in hadronic colls.

![](_page_52_Figure_3.jpeg)

 $BR_{n \to \gamma \gamma} \cdot R_{n/\pi 0} = 0.39 \cdot 0.45 \approx 0.18$ 

18%  $\eta$  contribution needs to be substracted from "unresolved"  $\pi^0$  spectra.

#### Unsubstracted $\pi^0$ "contaminations" at ISR (2)

All but one measurement at ISR didn't substract the  $\eta$  and direct- $\gamma$ 

 $\gamma/\pi^0$  ratio at high p<sub>T</sub> in p+p at 62 GeV (data compared to NLO pQCD):

![](_page_53_Figure_3.jpeg)

Prompt  $\gamma$  are a significant source of e.m. clusters above  $p_{\tau}$ ~6 GeV/c that needs to be substracted too

#### High p<sub>T</sub> suppression - baryons vs. mesons

- $R_{cp}$  (ratio central/peripheral) at intermediate  $p_T = 2 4$  GeV/c:
  - 1. Baryons: p,  $\overline{p}$ ,  $\Lambda$ ,  $\overline{\Lambda}$  **NOT** (or much less) suppressed in central Au+Au. 2. Meso

![](_page_54_Figure_3.jpeg)

Particle composition inconsistent with known fragmentation functions.

**a** Additional production mechanism for baryons in the intermediate  $\boldsymbol{p}_{T}$  range

(quark recombination ?). HARD PROBES '04, Ericeira, PT, Nov. 7 2004